
XRP: In kernel Storage Functions with eBPF

Yi He
Technical University of Munich

Hanwen Liu
Technical University of Munich

Wonbang Seo
Technical University of Munich

Yiwen Liu
Technical University of Munich

Abstract
With recent improvements of the NVMe devices, the software
storage stack in the Linux kernel has become a major bot-
tleneck of disk I/O. XRP is a new approach to bypass it to
achieve higher I/O performance using eBPF. In this paper, we
focus on analyzing the existing XRP project and improving
its performance as well as functionality.

Original Paper Summary and Evaluation

1 Introduction

With the rise of the high performance memory devices, over-
heads in linux kernel storage stack get more significant degra-
dations in latency and IOPS. To illustrate this, an experiement
was conducted to calculate Kernel’s latency overhead with
512B random reads in Intel Optane SSD P5800X. The kernel
side overhead accounts for 48.6 percent of the latecy [19]. The
result shows that kernel stack overhead is the major bottleneck
that should be dealt with.

1.1 Kernel bypass
There has been a lot of proposals to reduce the kernelside
overheads. One approach is to bypass the kernel. A Kernel
bypass would theoretically reduce the overheads by the half.
However, the kernel bypass brings about low granurarity, in-
effient I/O polling, and the CPU contention. And the problems
led an unexpected degradation in latencies and throughput.

1.2 eBPF
eBPF (extended Berkeley Packet Filter) [1] is an approach
to tackle the problems that arise in kernel bypass. eBPF is
an interface with which users can offload simple functions to
any kernel layers.

eBPF benefits legacy reads by cutting down overheads
traversing the majority of kernel stack. It prevents a string of

auxiliary I/O requests from traversing the stack by resubmit-
ting such a request at the layer where a BPF fucntion hooked.
For example, intermediate pointer lookups can be executed
by a BPF fucntion in the course of B-tree search. Zhong et
al. compared the performance improvement from a resubmis-
sion hook and the result showed the resubmission process
yields 1.8-2.5 times throughput increase after reaching CPU-
saturation. As with legacy reads, io_uring [3] also can benefit
from eBPF. Each I/O submitted with io_uring do not need to
passes through all the layers with the help of eBPF.

However, the resubmissions with in the NVMe drivers lack
metadata, the high level of context. As the drivers do not
have any access to it, a BPF function cannot hop to the next
offset. In addition, concurrency cannot be guaranteed as well
as NVMe layer does not access to both page cache and the
information on a data structure. The challenges make the
implementation difficult. That said, the observations show
that the files of many engines remain relatively stable; some
data structures are immutable, others are mutable but less
frequent. [19]

1.3 eBPF Design Principles

The observations led the following design principles:

• One file at a time restrict a chain of resubmissions on a
single file, which minimizes the metadata

• Stable data structures target the DBs that stay im-
mutable for a long period of time

• User-managed caches manage blocks in user-managed
caches

• Slow path fallback in case of a traversal fails, the ap-
plication must retry or fall back to dispatching the I/O
requests using user space system calls

1



2 XRP Design

2.1 Solution Main Ideas

To bypass most layers of the kernel and not raise the current
problems, they propose the eXpress Resubmission Path(XRP).
The key insights are the following two parts:

• Use eBPF functions to offload functions in disk

Their solution is not directly bypassing the kernel layer,
otherwise they indirectly cleverly exploit the properties
of eBPF [1]. Their scheme is not simply to unuse the
full kernel stack to reduce the time, they will traverse the
full stack in the very first and very end steps. [19] In the
intermediate steps, the BPF function can help us execute
the simple functions like parsing the B-tree. So XRP can
reduce the useless intermediate data and a series of the
syscall from user space.

• Resubmmission Logic

Unlike the common usages of BPF like packet filtering
and tracing usages, they implement the BPF function
in the storage devices. As we have said in the Chap-
ter 1, the low-level NVMe driver lacks the content that
higher levels provide. [19] To enable we can benefit from
traversing within the storage device, only with BPF can-
not fetch the file information of the next node. Although
we can get the corresponding logic address offset stored
in the BPF function, we need an actual physical address
in the process. They use metadata digest to achieve this
insight. [19] We will introduce this in 2.3.3. When we
resubmit the next node, we could use this to translate the
corresponding logic address into the pysical addrss of
the next node.

2.2 System Design

The system includes three main blocks within the NVMe
driver, namely BPF hook, metadata digest, and resubmission
block. We can see this in Figure 1. The BPF hook can trigger
our offload functions. The XRP maintains two queues, one is
to append the completion task(CQ), and the other is to append
the submission queue(SQ). [19] When we call XRP, the stor-
age device will change into an interrupt handler state. Then
we will execute the offload function. Here we should note
that the user functions must be checked firstly by the Linux
BPF verifier. When we want to fetch the next node, the XRP
invokes the metadata digest to translate the logical address
into the physical address of the next submission. According
to this, we can resubmit the next NVMe command.

Figure 1: System design: The main part of XRP and an
example of read_xrp.

2.3 Design Details

2.3.1 BPF Hook

They define a struct type bpf_xrp to match the offload func-
tions. Whenever we use XRP read_xrp system call, we need
to specify this signature so that the corresponding functions
can be called by the BPF hook. This signature is shown in the
listing 2.3.1. The first four fields are checked and modified by
the BPF caller when we execute the resubmission logic.
data buffers the data read from the disk, like the content

information to be parsed. done indicates whether we will con-
tinue the resubmission process. next_addr and size stores
the next logical addressed for the next resubmission. Com-
pared to the data, scratch is to store the process intermedi-
ate data like key values. Every time BPF function compares
the intermediate key with stored information in data. When
we find our target leaf node, it will return the key-value pair
to the user space. [19]

1 struct bpf_xrp{
2 char *data;
3 int done;
4 uint64_t next_addr [16];
5 uint64_t size[16];
6 char *scratch
7 }

2.3.2 BPF Verifier

The main function of the BPF verifier is to inspect the BPF
hook to ensure memory safety. The BPF verifier only accepts
a scalar or a pointer value stored in each register. Scalar
represents a value that cannot be dereferenced. And vari-
ous pointers are defined by the verifier to check the out-of-
bound access. For example, PRO_TO_MEM checks the referring
memory region size. For XRP, the verifier will check the
data and scratch fields, the first one is PRO_TO_MEM and
the second one is Scalar. Additionally, each BPF function
also defines a callback function is_valid_acess() to perform
additional checks. [19]

2



2.3.3 The Metadata Digest

As we have said, a very significant point of XRP is resub-
mission logic. In the normal method, the file system will be
responsible for the next read physical block physical address
translation. But if we want to ensure the main process is on
disk, we need to translate the logical address given by the
next_addr field in bpf_xrp.

The authors design the metadata digest, which is a thin
interface between the file system and the interrupt handler.
The file system shares its logical-to-physical-block mapping
with the interrupt handler, so when we execute the resubmis-
sion, even if the process is in the NVMe driver, we still can
fetch the necessary information that we need for the next
operation. [19]

One insufficiency is the metadata digest is limited by the
specific file system. For each different file system, we need to
design different logic to achieve this function. For example,
the authors achieve the metadata digest in the ext4 file system,
and the inode information is stored in a cached version of the
extent status tree.

The metadata digest block contains two main functions.
update_mapping is to keep the metadata up-to-date. The other
one, lookup_mapping, receives the inode address and returns
the corresponding physical offset and length. [19]

And the authors consider several special mechanisms at
the time of implementation. First, the BPF function cannot
resubmit the next logic address outside of the open file so
that the query range of the lookup function is limited. Second,
the XRP will perform the lookup function twice each time to
avoid conflict conditions. Such as when the update_mapping
is executed, if we read the same content meanwhile, the XRP
will abort the operation. In the worse case, if the XRP detects
an invalid logical address, the operation will fall back to the
normal system to attempt the request again. This is what we
called "slow path fallback" in the 1.3 part. [19]

2.3.4 Resubmitting NVMe Requests

Until this block, we have received the physical address of
the next fetch node. So we have fulfilled the prerequisites
of NVMe request. Updating the physical sector and block
addresses of the existing NVMe request struct: struct
nvme_command, according to the metadata digest. By this
way, we achieve the next NVMe command and go back to the
original BPF hook to call functions and start a new cycle.

2.4 Design Limitations

2.4.1 Synchronization Limitations

Due to BPF program can only obtain one lock at a time, and
the programm must release the lock before returning. And the
user space must through syscall to access the lock-protected

structure. So we cannot offload complex functions that require
several synchronization. [19]

2.4.2 Scheduler Limitations

The author observes that the compute-heavy process is starved
of CPU along with an I/O-heavy process in their experiments
in a microsecond-scale storage device. But the problem is not
caused and is not specific to XRP. But XRP exacerbates the
problem. [19]

2.5 Test Scenarios
BPF-KV is an author-designed simple key-value store to test
the performance of XRP. It uses a B+-tree store and provides
a method to create trees and operations. Using BPF-KV, they
test the latency and throughput in "read" and range query
scenarios. They also test tail latency when thread scaling. [5]

WiredTiger [11] is a real-word database an it is also a key-
value store. In addition to migrating the above tests, they also
experiment insert and scan operations.

Note that both in the BPF-KV and WiredTiger, the authors
integrate the BPF function and modify the syscall read_xrp.
In their experiment result, the overall performance of XRP
is better than other baselines, like SPDK. Although the av-
erage lookup latency in BPF-KV is larger than SPDK, both
of them are very faster and XRP avoids the SPDK’s prob-
lems. Besides, WiredTiger shows that the XRP only benefits
the lookup operation, other operations need I/O operations
that cannot be benefited from the resubmission logic. As a
result, these operations like scans cannot benefit a lot from
XRP. [2] [19]

3 Artifact Evaluation

In the following section, we will explain how we managed to
rebuild the original system and evaluate the result from the
original paper.

3.1 Rebuilding the System
Using the script provided by the authors, we were able to
build a patched version of the Linux kernel [4]. However, we
encountered some obstacles during the building process.

• The provided kernel config is not suitable for certain sit-
uation. On Ubuntu 22.04 [9] the resulting kernel image
did not have CONFIG_BLK_DEV_NVME enabled, which
causes the system unable to detect the NVMe drive.

• The shell script has a lot of bugs which lead to permission
errors. At some point the script creates a file with root
priviledges, but tries to wirte to the file without privilege
afterwards.

3



1 3 5 7 9 11
Number of Threads

400

500

600

700

800

99
th

 L
at

en
cy

 (µ
s)

SPDK
io_uring
read
XRP

1 2 3 4 5 6 7 8 9 10 11 12
Number of Threads

0

10

20

30

40

50

Th
ro

ug
hp

ut
 (k

Op
s/

Se
c) SPDK

io_uring
read
XRP

Figure 2: Testing Results

With aforementioned problems solved, we successfully
built the patched kernel (5.12.0-xrp+) together with some
utility programs in a virtual machine with the NVMe drive
passed through using vfio-pci [10] for testing.

3.2 Evaluation Process and Analysis
The test was done in two parts, where read_xrp was compared
to normal read syscall, io_uring [3] and SPDK [18] on top
of two applications. BPF-KV [5] was used for demostrating
the effectiveness of XRP, and WiredTiger [11] was used for
a real world benchmark. We tested the performance of XRP
in terms of latency and throughput under different workloads
and situations.

Soon we found out that the performance of the syscall
read_xrp was very unstable, both the latency and throughput
varied a lot from each individual invocations. Through further
experiments we determined that the problem lies in the CPU.
Modern CPU throttling or multitasking technologies such as
simultaneous multithreading (SMT) [15], turbo boost [14]
and cpu frequency scaling [12] were affecting the stability of
the performance.

After all these CPU technologies disabled, we finally man-
aged to reproduce the experiments very consistently with
stable results. To make sure the hardware is as similar as pos-
sible to the original authors’, we created the environment as
follows:

• patched kernel with Ubuntu [9] running in QEMU-
KVM [13]

• 6-core CPU with SMT disabled, locked at 3.6 GHz, all
performance governer disabled.

• 16 GiB of RAM

• Dell enterprise level PowerEdge series NVMe SSD
passthrough using vfio-pci [10]

3.3 Evaluation Results
The testing result in Figure 2 shows that XRP delivered ex-
pected performance in our environment. It provides consis-
tently lower latency as well as higher throughput than read
and io_uring. SPDK, as expected, is faster than XRP under

some conditions, but as soon as the number of threads sur-
passes physical CPU core count, its performance would be
drastically degraded.

Despite the performance of XRP is consistently better than
native Linux syscall, our result is still way slower (by order
of magnitudes) than what was demostrated in the original
paper [19]. With some experiments we conclude the reason
why our experiment is so slow in the following points:

• Hardware Difference the NVMe drive used by the
authors is Intel Optane P5800X, whose performance
is way better than what we had. On paper, it delivers
roughly twice the read speed, five times the write speed
and twice the IOPS(Input/output operations per second).
Other hardwares may also affect the performance but we
believe the disk is the main factor.

• Virtualization Overhead our experiments were run in-
side a virtual machine, the authors on the other hand was
doing theirs bare metal. A study suggested that using
NVMe with vfio passthrough would add performance
penalty in the neighbourhood of 20% [17]. Depending
on the actual hardware, we believe this also affect our
result in a similar manner.

• Server Resource our testing server was used by many
people at the same time. Although the workload was
not particularly high, this will definitely influence the
results.

In conclusion, we managed to reproduce the result pro-
vided in the paper and we recken that the artifact provided by
the authors is sufficient for other researchers to replicate the
results reported in the paper.

Research and Implementation

4 Research Proposal

4.1 Continue the XRP Research Flow
After we have understood the research flow of the authors:
They start from the existing problems and propose a new
scheme XRP, using eBPF to accomplish bypassing most of
the kernel layers. With some design principles and tricks, they
have successfully solved the problems that other full kernel
bypass methods have. At the same time, they give us a very
good example to learn how can we use the advantages of
eBPF to reduce the I/O time.

The first step is to start from a small point. Because the
functionality of BPF-KV being relatively clear and easy to
track, we first follow the BPF-KV [5] to figure out how can
they construct the eBPF function to execute the corresponding
functions, like range query.

The range query is a very common operation in data pro-
cessing, which aims to return a series of an array that fulfills

4



our requirements. When we interact with data stored on disk
in user space, we can use XRP to accelerate the query speed.
We figure out the principle of how can it return target key-
value pairs. In this process, we find that the normal way is to
use pread() [2], and every time it needs to traverse the whole
kernel stack. And authors only provide a few operations in
the BPF-KV. So can we add more operation functions like
aggregation functions to test the performance between the
normal mode and XRP?

In the second step, we go deep into the kernel to see de-
tailed implementations. If we use XRP, what is the flow of
the process? We go with the flow from the user space and
use syscall() to enter the kernel. In the kernel, we check the
author-defined function read_xrp [4] and corresponding re-
submission logic. We are inspired by B+-tree store and want
to expand XRP to some other similar data structures that
can be used in the XRP. Another structure that ensures this
functionality is the ext4 file system.

During check the codes, we find authors define a resub-
mission counter [4], but they don’t use it to limit unbounded
execution. And according to the XRP current serially submit
the command, we propose to change it into submitting in
parallel.

When we check all of the implementations of XRP in the
user space and in the kernel, in the last step, we treat the
project [6] from the Linux architecture angle. We notice the
current XRP only supports the 5.12 kernel version [4], so we
try to port the whole project into a newer Linux version. Be-
sides, as we mentioned in the chapter 2.4, the current process
scheduler is not "fair" for the computation-heavy task and
results in a starvation problem. So we want to improve the
scheduler.

4.2 Proposals Analysis

After a complete analysis of the project, we propose our re-
search improvements from the BPF-KV, XRP implementation,
and system architecture level. We will discuss them in detail
in Chapter 5.

With the improvement of BPF-KV, we can expand the test
and application scenarios of XRP so that we can check the
performance in more test scenarios and improve the applica-
tion ability of XRP. By changing some implementation details
and porting XRP to a newer version, we will improve the per-
formance based on the authors’ contribution. Also, we could
use newer Linux features and simplify the whole structure.
Lastly, we can experiment with different approaches to avoid
the starvation problem.

However, we still have faced some technical challenges to
solve these research proposals. Like in other data structures,
situations are not identical for us to fetch the next node’s phys-
ical address. And it is hard for us to simulate the starvation
scenario in the paper. [19] Next part we will focus on how we
have solved these challenges.

max 
min

10

key

2 3

value

key

value

key

value

10 2 3

Figure 3: Aggregation operations: the upper one introduce
a new variable to operate over single elements, the other one
introduce a key-value pair array to operate aggregation over
multiple elements

5 Design and Implementation

To achieve the goals in the research proposal, we have car-
ried out a series of designs on XRP. A gradual deepening of
understanding of XRP accompanies their implementation.

5.1 Aggregation Operations
The original XRP approach implemented support for B+ trees
and Modified WiredTiger. But they focus on queries on a
single value. So we add the aggregation operations here, the
user specifies the size of the interval to be searched, and the
program randomly initializes the starting index to calculate
the actual search interval.

Our specific operations are divided into two types, which
are shown in Figure 3: (1) accessing multiple elements and
then returning one value, and (2) facilitating multiple elements
to return multiple values. The first is by adding an extra
variable to enable the operation on newly traversed elements.
The second needs modifying the structure of the query struct
to support continuous queries and the returns which contain
multiple pieces of data. Besides, we designed two kinds of
return format. The first kind is to return an array of the query
range. The second kind is to return a set by checking and
deleting the duplicate elements and returning elements that
appear once.

5.1.1 Range Operation on Single Element

In this part, we implemented max, min, sum, and avg opera-
tions. For the max and min operations, we maintain a newly
set variable, and each time the elements are traversed in the
set interval, they will be compared with this new variable, and
finally, the corresponding result will be returned. For the sum
and avg operations, their implementations are relatively close.
First, we maintain a totalSum variable, and then we use the
second counter variable. In this way, after the traversal is over,

5



the desired value can be obtained through the calculation of
the two variables.

The simpleKV uses char arrays to store the value of each
node, but the final result we want is a specific number. So
we also need to convert the char array to a concrete number.
In the general case, for the user mode, the Stolen function
can be easily applied to solve this problem. But for programs
accelerated by eBPF in kernel mode, functions in the standard
library cannot be used directly. So we manually implemented
the corresponding function tool for calculation.

5.1.2 Range Operation over Multiple Elements

In this step, we set the query structure to contain multiple
elements. To be more specific, we introduce a key-value pair
array. Intuitively, an index variable is added to the query struct
to visit the targeted element accordingly. It should be noted
that in the logic of eBPF, the query struct occupies a pre-
allocated continuous space. This space is pre-allocated to the
struct by the user mode, and then the first address passed in is
parsed in a specific way same in the kernel. After operating
this alignment, the in-kernel function and userspace code can
have consistent logic.

After adjusting the framework including the query struct,
the rest of the work is to add the corresponding process in
the kernel query function: if an element is found, we put the
element into the position where the index of the key-value
pair array is the index and make the index increase. When the
userspace main program starts to receive the return value, it
passes out the whole key-value pair array. The corresponding
elements can be read and finally returns an array or a set
according to the user’s choice.

In the actual implementation, the continuous space of the
query struct needs to be pre-specified. We set this value as
0x1000. In this case, the maximum number of elements that
can be queried and stored in each query struct is also limited
by the given space. Considering all other variables needed
in the query struct to maintain the query, the final number of
elements that could be fetched from once query is 32.

5.2 Apply More Data Structures
After optimizing the original XRP querying processing, we
think about whether eBPF can be extended to support more
data structures. In this part, we designed two data structures:
easyArray and SkipLlist.

5.2.1 EasyArray

EasyArray is a simple array, the main structure and logic are
shown in Figure 4. The core idea is to design an intensive
disk-io task. Using a high-frequency reading task to verify the
effectiveness of the XRP method. EasyArray is a contiguous
sequence of address spaces distributed with randomly gener-
ated elements. In this array, the value of the corresponding

3 6 1 52 47 0

Figure 4: Querying Process of easyArray: Two continue
jumps are shown in this figure.

position can be obtained directly through the index. The tasks
performed by easyArray will first be given an initial query
index by the user, and then the initial value of the correspond-
ing position can be obtained. Then the value is performed
in a specified operation, the result will be used as the new
query index. The above process is named as a jump. When the
number of jumps specified by the user is completed, the final
value is returned. The main logic is shown as the following
code:

1 value = easyArray[index];
2 new_index = op(value)% easyArray.length;

The selection principle of the op() function is that the
simpler the better because the calculation of numbers will
not be accelerated in the kernel. And the simpler function
calculation still jumps the address and reads on the hard disk,
which leads to the same realization result. The core purpose
of designing easyArray is to compare the execution speed
of the same data structure and logic in user mode and eBPF.
Simple calculations will increase the proportion of hard disk
operation tasks, thereby enhancing the acceleration effect of
the XRP method on this task.

In the actual implementation, easyArray stores 1000 con-
secutive elements, and the type of the stored elements is
int. The first position of the query is specified by the user,
and the number of jumps is set for each query task. The
value obtained from the previous query is calculated by
op(value) = 2 ∗ value, and the modulo is performed on the
total length to obtain an effective and safe new index.

5.2.2 SkipList

The introduction of SkipList is to verify whether XRP logic
can support complex data structures. So the standard form of
skiplist is used directly, the data structure is like Figure 6.

After completing the data structure design and operating
logic, it needs to be implemented in the corresponding eBPF
program. The main difficulty in the implementation process
is that the kernel mode can only be implemented using the
features of the basic C language, and it needs to meet the
requirements of the eBPF verifier in terms of security.

6



Figure 5: SkipList Data Structure

5.3 Limit XRP Exectution Times
After in-depth research on the implementation of XRP, we
found that the original paper did not restrict the execution
times of XRP. In the Linux kernel, the main scheduling func-
tion of XRP is called in the nvme driver. The core logic is
abstracted into the form of Listing 5.2.1.

1 void nvme_handle_cqe(){
2 xrp_process();
3 if (finished){
4 fetch_result(&result);
5 return;
6 }
7 nvme_submit_cmd(new_request);
8 }

It will detect whether the execution of the driver function is
complete, if the execution is complete, it will save the corre-
sponding state and then exit; if it is not complete, it will trigger
the function again and enter a new query process. Based on
this logic, if meeting a kernel read function with many levels
of execution, such as easyArray that sets 10,000 iterations,
the query subtasks created by the eBPF query process will
occupy a large proportion of the whole nvme driver execution
tasks. This will reduce the proportion of other tasks, and may
even starve other tasks.

To make up for this shortcoming, we add a counter limit to
XRP, implemented by an atomic counter. The execution times
of the in-kernel storage function are counted in the actual
implementation. When each kernel function is executed, the
atomic counter will be incremented. After a certain number
of times, it will reach the boundaries, and the execution will
be stopped. The core logic is shown in the Listing 5.3. At the
same time, in the case of the early return, the temporary result
of the current calculation will be returned with an additional
flag variable to mark that the return is a temporary result.

1 / / a t om ic c o u n t e r i n c r e m e n t
2 atomic_long_inc(&xrp_ebpf_count);
3 if(xrp_ebpf_counter.counter > MAX_XRP_COUNT){
4 bool interrupt = true;
5 fetch_result(&result , interrupt);
6 return;
7 }

5.4 XRP-Parallel — Parallel XRP
In the XRP implementation, the system call and implementa-
tion are serial. An XRP task triggers the execution of another

Figure 6: Original XRP(left), XRP-Parallel(right): XRP-
Parallel parallel the execution of XRP, target achieving better
performance

task after execution. A natural idea is to adjust the serial task
scheduling to parallel scheduling so that better performance
can be achieved.

XRP-Parallel is designed based on the above ideas. It can
submit requests to two or more branches at the same time after
the execution of a request is completed, which has achieved
the purpose of parallel execution. Following the intuitive de-
sign idea, we define the parallel request structure and request
queue.

If we just submit them one by one through the queue, it is
not truly parallel. So we design to send the generated tasks
to different NVME execution queues for parallel execution.
Because we are modifying the nvme driver in the Linux kernel,
this design is feasible.

In the final implementation, limited by the understanding
of the nvme driver and the great difficulty of debugging in the
Linux kernel, we implemented the corresponding interface
and did not compile the latest version of the kernel.

5.5 Linux Kernel Porting

The Linux kernel [8] is developing rapidly. Since XRP was
created, a lot of new features and functions were added to the
kernel [7]. In order to benefit from the newly added function-
alities in terms of performance and ease of development, we
targeted to port the XRP patch to the latest longterm support
version of the Linux kernel.

We planed to port the patch to Linux 6.1 lts. However, the
block device and io_uring part of the kernel received some
significant changes in older versions of the kernel. As a result,
some of the functions used by XRP got removed and the
replacement function requires more information than before.
Due to the lack of knowledge of how the internal of Linux
kernel works, we decided to take a step backwards and target
Linux 5.15 lts instead.

Porting to 5.15 was successful. We managed also to make
use of some new kernel functions to simplify as well as im-
prove the logic for XRP. A non-exhausting list would include:

7



• Submitting a batch of nvme_request at once instead of
submiting sequentially using nvme_submit_cmds. This
improves the performance as it allows a batch of com-
mand share a same spinlock to avoid lock and unlock for
each individual request.

• Changed logic for initializing nvme_iod struct. The
updated version of this struct includes a field for
nvme_command, this makes it possible for XRP to save
a kmalloc() call for every single request.

• Setting up io_uring using updated io_op_def struct.

• Removed some redundant performance counters. Some
of the unused atomic variables were left in the codebase.
They were presumably used for developing purposes but
was not cleaned up.

In conclusion, we ported the kernel patch to a newer long
term support version, and improved some aspects of the XRP
logic.

5.6 CPU Scheduler

As mentioned earlier, XRP aggravates the starvation of CPU
based tasks in CFS (Completely Fair Scheduler). In order to
allocate more CPU times to XRP we targeted finding a better
scheduler for XRP.

We originally planned to experiment with different kernel
schedulers such as BFS, MuQSS and then design load bal-
ancer with the help of sched_ext class. However, we cannot
replicate the starvation in our machines. With some exper-
iments we came to a conclusion that the context switch in
our machine is less frequent than Optane SSD because our
hardware is 5 times slower in read speeds. As we lack the
knowledge the way to compensate the hardware difference
in a program, we decided to target an loadbalancer with cpu-
pinning. [16]

The idea is to reserve most of the CPUs for CPU-based
threads by cpu-pinning. For example in a VM system with 8
cores. 6 cores are pinned exclusively to cpu-heavy tasks. The
pinning process is as follows:

• Step 1 eBPF programs using sched_setaffinity are
hooked to kprobe

• Step 2 the programs pin the threads to vCPU with
sched_setaffinity system call. In this step most vCPUs
are reserved to CPU-heavy tasks.

• Step 3 kprobes propagate the systemcalls to a QEMU
hypervisor each invocation.

• Step 4 vCPUs are mapped to pCPUs.

6 Results

Due to a severe hardware failure happened at the end of the
project phase, we were unable to design a meaningful test for
our own implementation on the server. The performance of
the NVMe drive degraded drastically in the virtual machine
even without any modification from our side. Our experiment
showed that it could only deliver up to 1

5000 of the original
speed in terms of raw performance. After some experiments
and journal analysis as well as crashing the physical server
several times, we believe that that the vfio driver configu-
ration on the server is defected. The performance degrada-
tion only happens specifically in the virtual machine with
vfio [10] passthrough, for both normal read and read_xrp
syscalls. However at this point the project phase has already
ended and we didn’t manage to fix the server on time.

Therefore, all the tests we ran for our own implementa-
tion were done in an unstable environment with extremely
low performance, and the result is not reproducible or stable.
The throughput varied from 0.1 IOPS to 50 IOPS each time,
and the latency faced similar situation. With such low perfor-
mance any improvement to the original artifact cannot even
be observed.

It’s quite unfortunate that we cannot test our own code in
a real working environment, which in theory would improve
the performance of XRP. But even with such performance,
we were still able to observe that read_xrp is under most
circumstances faster than read.

7 Conclusion

In this project we verified the effectiveness of XRP and ported
its patch to a newer version of the Linux kernel. We simplified
and improved its logic in the kernel space. We optimized
BPF-KV, implemented new data structures and functionalities.
Although the hardware issue prevented us from progressing,
we were still able to implement a example as proof of concept.

Availability

Our contribution including modified Linux kernel and BPF-
KV can be found on GitHub [6].

References

[1] eBPF. https://ebpf.io/.

[2] pread(). https://man7.org/linux/man-pages/
man2/pread.2.html.

[3] Ringing in a new asynchronous I/O api, 2019. https:
//lwn.net/Articles/776703/.

[4] GitHub organization for xrp-project, 2022. https://
github.com/xrp-project.

8

https://ebpf.io/
https://man7.org/linux/man-pages/man2/pread.2.html
https://man7.org/linux/man-pages/man2/pread.2.html
https://lwn.net/Articles/776703/
https://lwn.net/Articles/776703/
https://github.com/xrp-project
https://github.com/xrp-project


[5] GitHub page for BPF-KV, 2022. https://github.
com/xrp-project/BPF-KV.

[6] GitHub organization for sys-lab-xrp, 2023. https://
github.com/ws-22-sys-lab-xrp.

[7] KernelNewbies: Linux changes, 2023. https://
kernelnewbies.org/LinuxChanges.

[8] The linux kernel, 2023. https://www.kernel.org.

[9] Ubuntu - enterprise open source and linux, 2023. https:
//ubuntu.com/.

[10] VFIO - virtual function I/O, 2023. https://docs.
kernel.org/driver-api/vfio.html.

[11] Wiredtiger storage engine, 2023. https://www.
mongodb.com/docs/manual/core/wiredtiger/.

[12] Ionut Anghel, Tudor Cioara, Ioan Salomie, Georgiana
Copil, Daniel Moldovan, and Cristina Pop. Dynamic
frequency scaling algorithms for improving the cpu’s
energy efficiency. In 2011 IEEE 7th International Con-
ference on Intelligent Computer Communication and
Processing, pages 485–491, 2011.

[13] Fabrice Bellard. Qemu, a fast and portable dynamic
translator. In USENIX Annual Technical Conference,
FREENIX Track, pages 41–46. USENIX, 2005.

[14] James Charles, Preet Jassi, Narayan S Ananth, Abbas
Sadat, and Alexandra Fedorova. Evaluation of the in-
tel® core™ i7 turbo boost feature. In 2009 IEEE In-
ternational Symposium on Workload Characterization
(IISWC), pages 188–197, 2009.

[15] Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L.
Lo, Rebecca L. Stamm, and Dean M. Tullsen. Simul-
taneous multithreading:a platform for next-generation
processor. 1997.

[16] Leonardi L., Lettieri G., and Pellicci G. ebpf-based
extensible paravirtualization. In International Confer-
ence on High Performance Computing, page 383–393.
Springer, January 2023.

[17] Ben Walker. High performance nvme virtualization with
spdk and vfio-user. 2021.

[18] Ziye Yang, James R. Harris, Benjamin Walker, Daniel
Verkamp, Changpeng Liu, Cunyin Chang, Gang Cao,
Jonathan Stern, Vishal Verma, and Luse E. Paul. Spdk:
A development kit to build high performance storage
applications. In 2017 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom),
pages 154–161, 2017.

[19] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas,
Jeffrey Tao, Evan Mesterhazy, Michael Makris, Junfeng
Yang, Amy Tai, Ryan Stutsman, and Asaf Cidon. XRP:
In-Kernel storage functions with eBPF. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), pages 375–393, Carlsbad, CA,
July 2022. USENIX Association.

9

https://github.com/xrp-project/BPF-KV
https://github.com/xrp-project/BPF-KV
https://github.com/ws-22-sys-lab-xrp
https://github.com/ws-22-sys-lab-xrp
https://kernelnewbies.org/LinuxChanges
https://kernelnewbies.org/LinuxChanges
https://www.kernel.org
https://ubuntu.com/
https://ubuntu.com/
https://docs.kernel.org/driver-api/vfio.html
https://docs.kernel.org/driver-api/vfio.html
https://www.mongodb.com/docs/manual/core/wiredtiger/
https://www.mongodb.com/docs/manual/core/wiredtiger/

	Introduction
	Kernel bypass
	eBPF
	eBPF Design Principles

	XRP Design
	Solution Main Ideas
	System Design
	Design Details
	BPF Hook
	BPF Verifier
	The Metadata Digest
	Resubmitting NVMe Requests

	Design Limitations
	Synchronization Limitations
	Scheduler Limitations

	Test Scenarios

	Artifact Evaluation
	Rebuilding the System
	Evaluation Process and Analysis
	Evaluation Results

	Research Proposal
	Continue the XRP Research Flow
	Proposals Analysis

	Design and Implementation
	Aggregation Operations
	Range Operation on Single Element
	Range Operation over Multiple Elements

	Apply More Data Structures
	EasyArray
	SkipList

	Limit XRP Exectution Times
	XRP-Parallel — Parallel XRP
	Linux Kernel Porting
	CPU Scheduler

	Results
	Conclusion

