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Abstract. During Endovascular aneurysm repair (EVAR) procedures,
surgeons always require several views of vessel structures to accurately
assess the size, shape, and location of the aneurysm, along with the sur-
rounding vasculature. However, even expert surgeons often require mul-
tiple attempts to find a desired view, which leads to increased radiation
exposure, high doses of contrast agents for patients, and time-consuming
re-positioning of the C-arm. This paper introduces an automatic frame-
work to provide optimal multi-view for the whole EVAR procedure. First,
a 3D nnUNet is employed to extract geometric information and seman-
tic information, providing accurate vascular and aneurysm segmentation
as well as semantic bifurcation detection. Then, a semantic vessel tree
model is built by integrating semantic information and geometric infor-
mation. A local 3D plane at each critical bifurcation is fitted based on the
centerlines surrounding this bifurcation, where we regard the estimated
3D local plane as a good view plane in patient physical space. Next,
some 3D points are collected from these centerlines, projected onto the
estimated local 3D plane, and transformed to the image domain to get
the paired 2D points. Finally, based on the geometric information of the
C-arm X-ray imaging device, the most informative view pose for C-arm
positioning is solved via RANSAC Perspective-n-Point algorithm with
the Levenberg-Marquardt optimization. Our work not only streamlines
the surgical planning process, but also helps in customizing the patient-
specific strategies to reduce risks and improve surgical outcomes. Our
framework has been validated using an in-house dataset collected from
27 patients, which contains preoperative CTA data and intraoperative X-
ray angiography images. The qualitative and quantitative results demon-
strate the reliability and effectiveness of our approach. Meanwhile, our
system achieved an average runtime of 6 min per patient.
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1 Introduction

In recent years, the rate of patients treated with Endovascular Aneurysm
Repair (EVAR) procedures has increased notably. Typically, successful EVAR
procedures demand the acquisition of multiple views to guide the intervention
comprehensively. Each view serves a vital role in navigating the intricate vascu-
lar anatomy, ensuring precise placement of endovascular devices, and monitoring
post-procedural outcomes. However, the safety of patients is still a major con-
cern as imaging surveillance is required. This comes with risks associated with
radiation exposure, contrast agent use, as well as increased costs.

With the exponential growth of medical imaging data and advancements in
computational power, deep learning algorithms have demonstrated remarkable
performance in various healthcare applications [19]. Utilizing preoperative CT
angiography images, significant progress has been made in 3D vascular segmen-
tation [3], aneurysm detection [17], aneurysm growth prediction [10], vascular
centerline extraction [6], and vessel labeling [20] to assist EVAR procedures.
Intra-operative X-ray images have also been the focus of numerous learning-
based approaches to aid EVAR procedures, such as X-ray/CT registration [13]
and 2D vessel segmentation [8]. However, few studies directly address the acqui-
sition of the optimal surgeon’s view. The definition of good views involves ensur-
ing that the imaging provides clear, accurate, and comprehensive visualization
of the relevant anatomical structures during the procedure. Fallavollita et al. [2]
proposed a user interface concept enabling the surgeon to manually select the
desired view before surgery, aiming to alleviate the challenges associated with
constantly repositioning the angiographic C-arm during intervention. Tehlan et
al. [16] suggested using an augmented reality head-mounted display for the sur-
geon to choose a desired X-ray view, providing corresponding C-arm configura-
tion as visual feedback. Nevertheless, manually selecting these optimal views can
be time-consuming and subjective, potentially leading to suboptimal outcomes
and increased patient risks. Recently, Kausch et al. [9] introduced a convolu-
tional neural network regression model to predict five degrees of freedom pose
updates directly from the initial X-ray image in orthopedic surgery, facilitating
automated C-arm positioning to achieve the desired view. However, this app-
roach necessitates manual annotations of desired views for training, which is a
labor-intensive and time-consuming task that significantly restricts its applica-
bility.

In this paper, we introduce a complete framework for automatically providing
multiple optimal views to guide EVAR procedure, thereby reducing the need for
manual selection and minimizing procedural inefficiencies. The main contribu-
tions are as follows. (1) We leverage 3D nnUNet to extract geometric information
and semantic information, where 3D center distance loss is proposed for accurate
semantic bifurcation detection. (2) Our framework effectively integrates semantic
geometric information extracted from patient-specific pre-operative CTA data
and geometric information of C-arm X-ray imaging device for multi-view C-
arm positioning. (3) We validate the feasibility and effectiveness of the proposed
framework using CTA data of 27 patients and their corresponding intraoperative
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X-ray angiography images, and the entire pipeline achieves an average runtime
of 6 min per patient.

Fig. 1. An overview of the proposed pipeline for automated multi-view planning. The
notation V represents the vascular segmentation, PA is the aneurysm coordinates.

2 Method

2.1 Aorta and Aneurysm Segmentation

We employ a 3D nnU-Net [7] to segment both the aortic vascular and the
aneurysms from pre-operative CTA data, trained with the Dice loss function,
as shown in Fig. 1(A). The coordinates of the aneurysm PA are further deter-
mined by calculating the centroid of the segmented aneurysm area.

2.2 Semantic Bifurcation Detection

This section focuses on extracting semantic information from pre-operative data.
Relying solely on extracting and labeling the centerline from vascular segmen-
tation V can lead to inaccuracies, particularly when the segmentation is not
continuous [18]. To improve accuracy, we focus our semantic annotations exclu-
sively on four key bifurcations. We utilize a 3D nnU-Net [7] to detect these
bifurcations directly by regressing Gaussian heatmap kernels in a supervised
learning manner, as illustrated in Fig 1(B).

For the ground truth, it has four channels, and the channel order represents
distinct semantic information. Each channel G ∈ RD×H×W contains an unnor-
malized 3D Gaussian distribution centered on each key bifurcation:

G(i, j, k) = exp
(

− (i − ci)2 + (j − cj)2 + (k − ck)2

2σ2

)
(1)
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where (ci, cj , ck) is the IJK coordinates of each bifurcation. Although
heatmap-based regression method is commonly used in 2D key point detec-
tion [11], it faces challenges in 3D space due to spatial sparsity. To mitigate this,
we set the σ value to 28mm to maximize non-overlapping area and minimize
sparsity.

We downsampled the vascular segmentation results to help the network rec-
ognize global structures more easily and simplify learning, especially for dis-
tinguishing symmetric key points, like left common iliac artery bifurcation and
right common iliac artery bifurcation. Additionally, we employ specialized loss
functions to adapt the sparsity of 3D space.

Weighted Mean Squared Loss. To encourage the network to learn non-zero
values, errors associated with non-zero values are given higher weight [4].

LWMSE =
1
N

N∑
i=1

wi(yi − ŷi)2 where wi =

{
1.8 if yi > 0
1 otherwise

(2)

Here, ŷi and yi represent the predicted and ground truth values. The weight wi

emphasize foreground values.

3D Center Distance Loss. While the weighted mean squared error loss
LWMSE can align predicted voxel values with the ground truth Gaussian dis-
tribution, it does not guarantee the accuracy of the predicted center point coor-
dinates. Typically, the Gaussian distribution peaks at the coordinates of anno-
tated bifurcations. While the Argmax function torch.argmax() returns the peak
coordinates of predicted Gaussian distributions, it is not differentiable. Inspired
by the differentiable 2D SoftArgmax function [12], we implement a 3D variant
that reduces the distance between the predicted and real center coordinates. It
has been proved that the maximum value location can be approximated by a
weighted sum of the predicted heatmap G ∈ R

D×H×W [5], namely taking the
expectation of the probability map G. The predicted maximum value coordinate
ĉ is calculated as:

ĉ = SoftArgmax(G) =
3∑

n=1

D∑
i=1

H∑
j=1

W∑
k=1

Wn,i,j,kG
′
i,j,k (3)

where the G′
i,j,k is the softmax normalized value of G at location (i, j, k). With

the location coordinate (i, j, k), we calculate weighted matrix W ∈ R
3×D×H×W ,

which can be treated as 3D discrete normalized ramps along axis I, J,K. The
notation n corresponds to these three channels:

W1,i,j,k =
i

D
,W2,i,j,k =

j

H
,W3,i,j,k =

k

W
(4)
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Our center distance loss calculates the L1 Loss between the predicted and
ground-truth key bifurcation:

Lcenter = |ĉ − cgt| (5)

Therefore, the composite loss uses coefficiency λ = LWMSE/LCenter to
dynamically combine these two losses:

Ltotal = LWMSE + λLcenter (6)

2.3 Automated Optimal View Selection

Until now, the vascular segmentation V and the predicted bifurcation coor-
dinates K are obtained. In order to integrate these geometric and semantic
information together, a semantic vascular tree is built. For the centerline extrac-
tion from vascular segmentation V , the classic iterative thinning algorithm [14]
is adopted. Then, based on topological analysis in 26 neighborhood system, all
bifurcations, edges points and end points are identified from extracted centerline
model. Predicted bifurcation coordinates K are adjusted to align with nearby
bifurcations on the centerline model if they fall within a specified threshold.
When we identify a nearest bifurcation point, we accurately determine the loca-
tion of key points and provide relevant semantic information for those points.
Next, we can fit a 3D plane based on the interested bifurcations and the sur-
rounding branches. Of note, due to the multiple bifurcations exist above the
renal artery, we apply an outlier exclusion algorithm to discard atypical vessel
orientations to ensure that the planes accurately represented the majority of
vessel orientations. For further details, please check Algorithm 1.

We then randomly sample some points on the centerline model around the
interested key points. The 2D-3D point pairs are obtained by projecting these 3D
points onto the fitted plane and transforming them into image domain, result-
ing in 2D IJ coordinates. RANSAC Perspective-n-Point (PnP) algorithm [1] is
utilized to calculate the pose for virtual C-arm positioning. The goal of using
the RANSAC algorithm is to identify and mitigate outlier effects to accurately
estimate the object’s pose. The intrinsic camera matrix provided to the algo-
rithm is calculated based on the following geometric parameters of the C-arm
device: the distance from the X-ray source to the isocenter of device is 742.5 mm;
the distance from the detector to the isocenter of device is 517.15 mm; both the
width and height of the detector are 432 mm, and the pixel size in detector is 0.3
mm. Meanwhile, to enhance stability across each sampling iterations, we apply
the Levenberg-Marquardt algorithm [15] iteratively, calculating the reprojection
error from the PnP solution. We then remove outlier points according to the
error while ensuring a minimum number of points are maintained. Finally, we
visualize our pose quality by rendering X-ray images using Digital Reconstructed
Radiography (DRR) method [21].
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Algorithm 1
Input: Vascular segmentation V , aneurysm position PA ∈ R3, predicted key bifurca-

tions coordinates list K = {ki ∈ R3, i = 4}
Output: Final key bifurcations coordinate list Kfinal = {kfinali ∈ R3, i = 4}, adja-

cent points dict Kadj = {kfinali : kadjj ∈ R3, j = min(len(points), 90)}
1: Get vessel tree T and bifurcation points Pb from V via thinning algorithm
2: for ki in K do
3: Relocate ki with nearest bifurcation point Pb within threshold dist = 20mm as

kfinali , if larger than threshold, choose ki as kfinali

4: Identify vessel sub-tree Tsubk = Tkfinali
from T associated with kfinali . Sample

adjacent points kadjj on Tsubk for kfinali .
5: if kfinali is not kidney or aneurysm key point or degree(kfinali — Tsubk) = 3

then
6: continue
7: else
8: for each branch t∗ in Tsubk do
9: Let S = Tsubk \ {t∗} {Set S contains all branches except t∗}

10: Compute the angle θ between the directional vector of t∗ and the normal
vector of the plane fitted to S

11: if all angle is greater than a threshold=25 then
12: Exclude branch t∗ from Tsubk

13: Fit arbitrary local plane L using final key points Kfinal and adjacent points Kadj .

3 Experiments and Results

3.1 Dataset

An abdominal dataset is collected from 27 patients diagnosed with aneurysms.
For each patient, it includes a preoperative CTA data obtained using a GE Rev-
olution EVO CT scanner and some intraoperative X-ray angiography images.
For CTA images, the reconstructed slice thickness ranges from 1mm to 3mm
and in?plane spacing from 0.79mm to 1.34mm. In addition, abdominal vascular
mask, aneurysm mask and four key bifurcations from each CTA data are man-
ually annotated using open source 3D-Slicer software. The four key bifurcations
are the renal artery bifurcation, iliac bifurcation, and the bifurcations of the left
and right common iliac arteries, as shown in Fig. 1(B).

3.2 Results on Vascular and Aneurysm Segmentation

The experiment results of vascular and aneurysm segmentation by five-fold cross
validation are shown in Table 1. Obviously, the vascular and aneurysm segmenta-
tion show strong performance, laying a solid foundation for subsequent geometric
analysis.

3.3 Results on Semantic Key Bifurcation Detection

The performance of semantic key bifurcation detection is evaluated by calculat-
ing the mean distance and variance between predicted coordinates and ground
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Table 1. Experiment results on vascular and aneurysm segmentation by five-fold cross
validation

Dice Precision Recall F1-Score IoU

Vessel Segmentation 0.975 0.964 0.986 0.975 0.952

Aneurysm Segmentation 0.866 0.933 0.831 0.879 0.770

Table 2. Ablation study on semantic bifurcation detection evaluated by L1 distance
error

LWMSE Lcenter Input Mean/mm ↓ Variance/mm2 ↓
� � Segmentation 10.968 8.954

� � Raw CTA 22.313 165.515

� Segmentation 18.811 89.561

� Segmentation 99.506 12057.061

truth coordinates of each key bifurcation. The performance of our method is
shown in the first row of Table 2. Meanwhile, Table 2 also reflects outcomes
from ablation studies testing various combinations of inputs and loss functions.
Compared with taking raw CTA data as input, taking vascular segmentation as
input has more advantages, resulting in less errors in the mean distance and dis-
tance criterions. While employing LWMSE alone yields commendable regression
outcomes, it is crucial to note that this loss function does not directly target
bifurcation coordinates. Therefore, the integration of Lcenter loss can further
enhances our results. Interestingly, when only Lcenter is used, it leads to the
worst performance.

3.4 Results on View Planning

An ablation study is conducted on view pose solution, as shown in Table 3.
The PnP re-projection error is employed as evaluation metric. From Table 3,
traditional PnP algorithm fails in solving view pose. And our experiment results
demonstrate that the RANSAC PnP algorithm [1] combined with the Levenberg-
Marquardt (LM) algorithm [15] achieves very stable and accurate view pose
solution.

Table 3. Ablation study on view pose solution evaluated by re-projection error

Algorithms Mean /mm ↓ Variance/mm2 ↓
Traditional PnP 3333.945 2.803 × 107

RANSAC PnP 1.060 0.060

RANSAC PnP + LM 0.565 0.043
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Fig. 2. Visual comparison between real X-rays and DRRs generated from planned
view poses in three patients. The locations of the comparison correspond to the 3D
visualization of the CTA and are marked with different colors.

Since our work is the first to propose multi-view planning for EVAR proce-
dures, there are no existing works available for direct comparison. To validate
the effectiveness of our proposed framework, we compared our results with intra-
operative X-Ray angiography images, as illustrated in Fig. 2. Compared to the
X-ray images used by surgeons during intervention, the DRR images generated
using our planned views are very similar to them and show clearer vascular pro-
jection anatomy. The surgeons further evaluated the planning views generated by
our proposed framework in these 27 patients and they were confident that these
planning views were sufficient to guide the surgery. Additionally, more planning
views are shown in Fig. 3. Our proposed method can not only provide a view
based on a single key point of interest, but also coordinate multiple key points

Fig. 3. Different views based on various key points of interest.
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of interest to plan the view. Compared to standard AP view, the planned views
help surgeons understand complex vascular anatomy more easily and quickly,
showing less overlap and clearer branching structures.

4 Conclusion

In this paper, we present an efficient framework that automatically provides mul-
tiple optimal views for guiding EVAR procedures. By utilizing 3D nnUNet for
precise vascular segmentation and semantic bifurcation detection, we construct a
semantic vessel tree model integrating geometric and semantic information. This
model assists in identifying optimal viewing planes at critical bifurcations. We
then accurately determine the C-arm pose using the RANSAC Perspective-n-
Point algorithm. Our framework helps address challenges such as excessive radi-
ation exposure, high contrast agent doses, and time-consumption repositioning,
streamlining the surgical planning process and enabling patient-specific strate-
gies. Validated with an in-house dataset from 27 patients, our system demon-
strates reliability, effectiveness, and a practical runtime of 6 min per patient.
Future work will focus on further refining the framework to enhance its adapt-
ability to a wider range of vascular surgeries and integrating preoperative and
intra-operative registration modules to smoothly apply preoperative view plan-
ning to intra-operative settings.
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