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“a photo of Yorkshire terrier in the lake shore 
background: A tranquil lakeside with a small dock, 
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Texture

“a photo of blue grey Yorkshire terrier.” “a photo of Yorkshire terrier with a detailed 
golden coat: long, wavy golden fur.”

“a photo of Yorkshire terrier in the oil rig 
platform background: An open steel platform 

surrounded by ocean.”
“a photo of green Yorkshire terrier.”

“a photo of Yorkshire terrier with a detailed 
elephant skin texture: characterized by thick, 

rough, and wrinkled surfaces, with deep creases.”
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Figure 1. To investigate the necessity of ensuring feasibility (attributes assigned to an object in a synthetic image could exist in the real-
world training domain) within synthetic training data, we propose our minimal-change pipeline VariReal. We isolate target attributes in
three categories: background, color, and texture, allowing us to compare CLIP [34] classification performance with feasible and infeasible
synthetic data from different perspectives. We also compare images generated by VariReal to those from prior text-guided editing meth-
ods [6, 35], covering both feasible and infeasible attributes in each category. Edition prompts are shown below the generated images.

Abstract

With the development of increasingly photorealistic diffu-
sion models, models trained in part or fully on synthetic
data achieve progressively better results. However, diffu-
sion models still routinely generate images that would not
exist in reality, such as a cat floating above the ground or
with unrealistic texture artifacts. We consider these types of
images infeasible. Intuitively, training with infeasible im-
ages should be detrimental to a model’s ability to generalize
to real data; hence, infeasible images are typically treated
as out-of-distribution (OOD) and removed from the train-
ing set whenever possible via filtering techniques. But does
feasibility really matter? In this paper, we investigate the
necessity of feasibility when generating synthetic training
data for classifiers by using an LLM to define per-class in-
distribution (ID) and OOD attributes realting to the three
target categories: background, color, and texture. We in-
troduce a minimal-change generation pipeline, VariReal, to
create feasible and infeasible comparison pairs from real
images. In this way, we isolate the target attribute from

other information in the synthetic data. We show that fea-
sibility of the synthetic data does not majorly affect perfor-
mance on several fine-grained classification datasets when
LoRA fine-tuning CLIP on synthetic data, showing less than
1 percentage point difference in top-1 accuracy between
feasible and infeasible datasets across almost all test set-
tings when evaluated on Oxford Pets, FGVC Aircraft, and
Stanford Cars. More importantly, we show that mixing fea-
sible and infeasible data within synthetic training datasets
does not significantly impact performance when compared
with models trained on only feasibles or infeasible synthetic
images.

1. Introduction
In recent years, large-scale pre-trained models [7, 24, 31,
37, 48, 57] have significantly surpassed traditional deep
learning and machine learning approaches in various tasks.
However, as the scale of training data grows, access to high-
quality data has become increasingly limited [61], posing



challenges to further improving these large models’ capabil-
ities. With the popularity of generative models [19, 30] like
Stable Diffusion [48], researchers are increasingly lever-
aging these models to generate high-fidelity synthetic data
that closely resembles real-world data, offering a solution
to data scarcity [14, 18].

Prior studies have explored synthetic data generation un-
der a limited few-shot real image setting [8, 13, 20, 22, 27,
51, 52, 56]. These works aim to create synthetic data that
approximates the real-world data distribution while avoid-
ing overfitting to the limited available examples. Some
studies [22, 27] suggest that synthetic data can offer ben-
efits beyond those of real data. However, the inherent ran-
domness in the image generation process of diffusion pro-
cess [24, 48] can introduce domain shifts [22] or implausi-
ble scenarios like “a dog floating in the sky” [51] that do not
reflect realistic patterns, which might intuitively be counter-
productive.

Interestingly, some studies [4, 9, 17] suggest that OOD
data can positively impact downstream tasks when mixed
with real data in certain proportions. A typical example is
data augmentation [17], where some augment methods in-
troduce OOD data relative to the original distribution yet
still provide benefits. While the advantages of OOD data
generally diminish as divergence from the original distri-
bution increases [9], these findings demonstrate OOD data
is not always harmful. Conversely, incorporating feasible
content similar to the training domain is naturally benefi-
cial. The ALIA method [13] augments datasets with “fea-
sible backgrounds”, demonstrating performance improve-
ment with ID data. This raises a key question: does training
data feasibility affect downstream tasks, and could control
the incorporation of such OOD data improve performance?

This work introduces an automatic minimal-change gen-
eration pipeline, VariReal, based on Stable Diffusion [48].
VariReal allows us to control object feasibility to create
targeted synthetic comparison pairs, as the example shows
in Figure 1. We evaluate feasibility effectiveness by em-
ploying the CLIP [34] classifier and fine-tuning it on the
synthetic dataset generated using VariReal. Precisely, we
manipulate three key object attributes—background, color,
and texture—to examine classifier performance under two
conditions: (1) fine-tuning with synthetic data only and (2)
mixed training with real and synthetic data. For each at-
tribute, we consider feasible data as ID and infeasible data
as OOD. For example, a black ”Bombay” dog is a plausible
real-world instance (ID), while a ”Bombay” dog with white
fur is infeasible and thus categorized as OOD.

Our experiments on three fine-grained datasets reveal
several key insights. We also show that modifications sim-
ilar to ALIA [13] do not necessarily need to select only
feasible scenarios. Regardless of feasibility, changing the
background can enhance the classifier’s focus on the pri-

mary task, while foreground modifications for color and
texture often challenge the classifier’s learning process. We
also demonstrate that mixing synthetic data can yield per-
formance benefits when paired with real data.

In summary, our contributions are as follows:
• We propose VariReal, an automated generation pipeline

for producing minimal-change synthetic data by altering
only one attribute at a time. This approach can be applied
out-of-the-box to any object-centric classification dataset
without additional fine-tuning.

• We generate and provide feasible (ID) and infeasible
(OOD) dataset comparison pairs based on real images,
covering three controlled attributes.

• To explore feasible and OOD data roles, we fine-tune
CLIP with LoRA modules. Analyzing classification
scores, we offer new insights into the impact of feasi-
bility and the strategic use of OOD data for enhancing
downstream task performance.

2. Related Work
Effect of out-of-distribution data. OOD data, defined rel-
ative to ID data, introduces a distribution shift between train
and test data. OOD data is generally categorized into se-
mantic and covariance shifts [54]; here, we focus on co-
variance shifts. Early works [4, 17] attributed OOD data’s
benefits to feature invariance and the stochasticity it adds in
gradient descent, helping avoid local minima and improving
optimization. However, this conclusion was drawn using
only simple OOD data types.

Silva et al. [9] and Geiping et al. [17] show that, for small
domain shifts, adding OOD data reduces generalization er-
ror on the original test set and exhibits non-monotonic be-
havior. While most research has relied on basic models
(e.g., ResNet [21]) and datasets (e.g., MNIST [11]), our
work seeks to extend OOD data study to more complex sce-
narios with diffusion models, utilizing advanced architec-
tures like CLIP to deepen understanding of OOD effects.
Learning with synthetic data. Several studies [8, 22,
27, 51, 56] focus on generating synthetic data that approx-
imates real-world distributions. This approach aims to cre-
ate a dataset larger than the few-shot samples. Gener-
ated data supports various tasks, including object recogni-
tion [8, 13, 27, 51], object detection [15], and semantic seg-
mentation [52]. Its effectiveness is demonstrated by train-
ing models exclusively on synthetic data or in combination
with real data [22, 27]. In this work, we focus specifically
on object classification.
Automatic approach for minimal change generation.
Unlike synthetic data generation methods that focus on cre-
ating novel and diverse in-distribution images to expand
limited real training sets [27], minimal change generation
aims only to modify specific areas or attributes of existing
images. Generative models, particularly diffusion-based
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“a photo of Bentley Arnage Sedan 2009 in the industrial area: A zone filled with warehouses, factories, and heavy vehicles.”

“a photo of Bentley Arnage Sedan 2009 in the deep blue color.”

“a photo of Bentley Arnage Sedan 2009 with wood grain texture: parallel grooves and rings resembling tree bark.”
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Figure 2. We compare generated images for various potential methods: inpainting [39] only, inpainting with Real Prior, ControlNet [58]
only, ControlNet with Raw Prior, ControlNet with Real Prior, and our final generation results under three settings. The generation prompts
are listed below the generated images, and the Raw Prior and Real Prior are shown in columns 2-3.

approaches [43, 46, 48, 50], facilitate efficient image edit-
ing without requiring manual annotation [22] or physical
graphics engines [3, 45]. In particular, text-to-image stable
diffusion methods are popular for minimal-change editing
due to their high fidelity generation. Beyond text guidance,
these models also support diverse conditioning inputs, such
as reference images for IP-Adaptor [55] and Canny edge
maps for ControlNet [58].

These methods fall into two main categories: fine-tuning
[6, 16, 60] and attention- or mask-based diffusion ap-
proaches [23, 35]. Fine-tuned methods, such as Instruct-
Pix2Pix [6], require model retraining to achieve desired ed-
its across new input domains. In contrast, attention- and
mask-based diffusion models can target specific modifica-
tions without further fine-tuning. Attention-based meth-
ods, like FPE [35] and P2P [23], substitute certain self- or
cross-attention layers in the U-Net [49]’s denoising process,
leveraging the interpretability of attention maps. However,
these methods may not perform well in all scenarios, partic-
ularly with real images. Mask-based diffusion models, in-
cluding inpainting [38] and specialized mask-driven editing
methods [28, 42, 53], allow controlled modifications within
specified areas, preserving regions outside the mask. When
editing object attributes, however, mask-based models can
sometimes alter subtle shape details of the object. Methods
like ControlNet [58] can help maintain an object’s original
structure during edits.

The most comparable work to ours is VisMin [2], which
generates minimal-change data to enhance vision-language
model comprehension. However, their approach does not
address background modifications and shows a high failure
rate in other settings. In this study, we introduce an auto-
matic, off-the-shelf approach that enables minimal, photo-
realistic edits for any combination of real images and in-
structions.

3. Method
3.1. Preliminaries
Task formulation. Our goal is to analyze the impact
of feasible (ID) or infeasible (OOD) synthetic data, ISyn,
where feasibility is specified in the context of each individ-
ual class ci, i = {1, . . . , C}. Our diffusion-based VariReal
pipeline generates ISyn comparison pairs by modifying a
shared real-image base, IReal, with unique prompt guid-
ances. In this way, we isolate the feasibility of target at-
tributes while otherwise minimally modifying the image
(i.e. we train with the same dog in black and blue). Guid-
ances are LLM-generated sets of class-feasible Pf (ID) and
infeasible Pif (OOD) prompts. We combine each r ∈ IReal
with every p ∈ Pf , Pif , such that every real image is re-
peated |Pf | = |Pif | times. Using number |Pf | > 1, we can
evaluate the impact of additional synthetic augmentations
without requiring more real images. We generate datasets
to evaluate feasibility in the context of three isolated cate-
gories: background, color, and texture. Note that texture
properties also encompass color characteristics. We then
LoRA fine-tune CLIP on the ID and OOD synthetic data to
compare the downstream training impact of ID and OOD
synthetic data on classification task.
Fine-tuning with low-rank adaptation. The Low-Rank
Adaptation [25] introduces low-rank decomposition into
the pre-trained weight matrix to reduce the number of learn-
able parameters. The final weights after fine-tuning could
be expressed by h = W0x+BAx, where W0 represents the
pre-trained weights. The decomposed weights B ∈ Rd×r

and A ∈ Rr×k, with LoRA rank r ≪ min(d, k).
Latent Diffusion Models. Latent Stable Diffusion [48]
encodes an image into a latent space using an encoder, de-
fined as z0 = E(x0), and learns a conditional distribution
p(z|c) by predicting the Gaussian noise added to the latent
vector. The objective function can be expressed as:
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Figure 3. In our VariReal synthetic image generation pipeline, common shared steps are shown in black, while the processing of color,
texture, and background are represented in pink, gray, and green, respectively. Solid lines indicate the primary workflow of our method,
and dotted lines denote conditional model processing steps.

min
θ

E(x,c)∼D, ϵ∼N (0,1), t

[
∥ϵ− ϵθ(zt, c, t)∥22

]
(1)

where zt is the noisy latent representation, c is correspond-
ing conditions and ϵ represents the Gaussian noise added
at each time step t. For the inference process, a randomly
noised vector is sampled and denoised over T steps to ob-
tain the final latent representation z0, which is then de-
coded back into pixel space using the decoder D(z0) of the
VAE [30].
A naive solution. Naive solutions could employ text-
guided Inpainting models [38] (e.g., SDXL Inpaint-
ing) or Canny-edge-based ControlNet [58] models (e.g.,
SDXL ControlNet), using a base prompt Pbase =
”a photo of a [CLS]”. However, the original image heav-
ily influences Inpainting modifications. For instance, in the
third column of Figure 2, when attempting to change the
color of a black car, the output image often retains a dark
hue, thereby limiting the model’s effectiveness in altering
attributes.

On the other hand, ControlNet-generated images can
preserve the object’s structure without being affected by the
original attributes, as shown in the fifth column. However,
they are often less natural. Furthermore, objects in these
images sometimes appear floating in the background, de-
tracting from overall realism.
Motivation. To overcome the limitations of existing meth-
ods, we design a pipeline which overcomes the individual
weaknesses of out-of-the-box methods by combining the
individual strengths of the components, i.e. combining In-
painting’s realism with ControlNet’s preciseness.

3.2. VariReal: Generating Minimal-Change Data
In this section, we present our zero-shot minimal-change
image generation pipeline. We first generate prompts Pf

and Pif (Figure 3 (a)) as described in Section 3.2.1. The
required mask and Canny images are created as shown in
(b) and (c) under Grounding mask and Canny images in
Section 3.2.2. We use prior information (d) to guide the
VariReal generation, explained in Prior generation of Sec-
tion 3.2.2. The diffusion Inpainting model and ControlNet
then generate images based on Pf and Pif (Section Mini-
mal change). Finally, Final process (g) and Section 3.2.3
describe the final steps and MLLM model filtering.

3.2.1. Guidance Prompt
Pf and Pif will guide the Stable Diffusion model to edit
desired content. To generate as many accurate Pf and
Pif as possible, we utilize ChatGPT-4 [1] with In-Context
Learning [12], providing the model with positive exam-
ples Example+ and negative examples Example− to help
avoid errors and repetitive content. To improve the fine-
grained detail and realism of the generated backgrounds
or textures, we instruct GPT to append a brief explanatory
description when generating prompts, providing more de-
tailed guidance for image generation. The prompt example
is shown in the lower left corner of Figure 3.

Although large language models possess broad knowl-
edge across various domains, ChatGPT still regularly des-
ignates ’feasible’ attributes for a target object that do not
exist in the real world, particularly for fine-grained classes
for which it has limited knowledge. To address this is-
sue, we design additional prompts to instruct the model



to perform preliminary checks and filtering on its outputs.
Specifically, for the attributes of a given category, the model
filters out infeasible features that do not align with the
real attributes, ensuring that the generated prompts meet
our requirements. Manual verification ensures that feasi-
ble prompts align with the training domain. Using the same
base prompt and ChatGPT-generated results, we form our
final prompts shown in Figure 3. Details of the generation
process are provided in the Appendix.

3.2.2. Prior-Guided Minimal Change Generation
Grounding mask. For models requiring mask information,
we use Grounding Dino [36] to generate bounding boxes
bboxi, which are then fed into the SAM2 [47] model to
produce masks mi for each category ci. For samples with-
out detectable bounding boxes, we use the RMBG1.4 [5]
foreground segmentation model as a fallback to ensure each
sample has a mask.
Canny images. In our method, we use the Canny image
ControlNet [58] model. For background editing, the Canny
image is created by extracting the foreground Foregroundi
from maski. For color and texture modifications, we gener-
ate a complete Canny map from the real image.
Prior generation. For the ”Background Prior” and ”Tex-
ture Prior”, we use prompts Pf or Pif . For color edits, RGB
values are selected from a predefined Color Bank. We refer
to the initial outputs as Raw Prior and combine them with
real images to produce the Real Prior as shown in column
2-3 in Figure 2.

We replace the original image’s background with the
generated Background Prior, using mask dilation to pre-
serve context and maintain a natural spatial relationship
(e.g., keeping a pet grounded). For color or texture changes,
we overlay the generated prior as an alpha channel to retain
the subject’s shape and details. Both Raw Prior and Real
Prior are tested with the ControlNet model, conditioned by
IP-Adaptor [55], while Inpainting uses only the Real Prior.
Comparison results are shown in Figure 2.
Final process. The final step in our generation process is to
copy the invariant areas from the original image and paste
on the generated image to ensure minimal change.
Minimal Change for Background. Figure 3 shows
that incorporating prior information significantly improves
success rates and generation details for background set-
tings. Using Inpainting with Real Prior, a background re-
gion mask, and the corresponding prompt P , our back-
ground modification approach meets desired requirements
and achieves the best performance.
Minimal change for foreground. Conversely, color and
texture require foreground modifications. In Figure 2, we
show that single-stage Inpainting and ControlNet are insuf-
ficient: Inpainting may apply unintended object shape mod-
ifications, while ControlNet may produce unnatural results.

To address this, we first generate an initial refined image
with SDXL Inpainting, which is then used as a conditional
input for ControlNet to generate the final image. This ap-
proach in Figure 3 combines the strengths of Inpainting and
ControlNet, ensuring the main object’s shape remains intact
while achieving the desired, natural color or texture.

3.2.3. Automatic Filtering
To ensure generated images meet prompt requirements, the
MLLM Llava-Next [33] model checks each image’s fea-
sibility and attributes. Using predefined questions, we fil-
ter out images that do not match the specified background,
color, or texture, and exclude unrealistic object-background
combinations, such as ”a flying plane in a hangar.” Although
a hangar is feasible for aircraft, it is considered infeasible
in cases where the original image shows the plane flying.
More details about the filtering questions can be found in
the Appendix.

3.3. Feasibility Effectiveness Validation
We evaluate the impact of data feasibility by training
CLIP [34] on the synthetic data and testing on real images.
Building on prior research [27], we fine-tune both CLIP’s
image and the text encoder by incorporating LoRA [25]
modules. For the text encoder, we use the prompt ”a photo
of [CLS]” for each class in the set of classes C. We employ
a supervised learning strategy to train with a classification
loss.

When the classifier is trained using only the synthetic
dataset, the loss function is the cross-entropy loss. In the
mixed training scenario, the loss function is an average of
the real and synthetic data losses, weighted by a parameter
λ. The loss function is formulated as follows:

LC = λCE(Real) + (1− λ)CE(Synth), (2)

where λ is the weight assigned to the loss from real data,
and the function CE denotes cross-entropy loss.

4. Experiments
4.1. Experiments Setup
Dataset. Because our modifications for background, color,
and texture require both a well-defined foreground object
and a visible background, datasets with images dominated
solely by foreground objects, such as ImageNet [10], are
unsuitable for our experiments. Fine-grained variations pro-
vide a better basis for comparing feasible and infeasible
attribute changes. Thus, we select three base datasets to
generate our minimal-change synthetic datasets: Oxford
Pets [44], FGVC Aircraft [40], and Stanford Cars [32],
To further validate the background modification setting, we
selected the binary classification WaterBirds [13] dataset,



which includes landbirds and waterbirds against land or wa-
ter backgrounds. To prevent the classifier from relying on
background cues, the dataset introduces a 5% bias, with
some landbirds on water and waterbirds on land.
Implementation details. In our VariReal pipeline, we use
Stable Diffusion [48] v2.1 to generate prior images for
background and texture modifications. We employ SDXL
Inpainting v0.1 and the SDXL ControlNet [58] v1.0 model
based on Canny edge images. For automatic filtering,
Llava-1.6-7B model is used. The real images for modi-
fication are sourced from each dataset’s training set. De-
tailed generation parameters for each dataset and class can
be found in Appendix. Unless noted otherwise, we train
with 100 real images per class and |Pf | = |Pif | = 5, mean-
ing we generate 5 synthetic images corresponding to each
real image base.

We use the AdamW [29] optimizer to train the CLIP
ViT-B/16 classifier with LoRA applied to both the image
and text encoders, using a rank of 16. The scale factor λ
is set to 0.5 to balance the contribution of real and synthetic
cross-entropy losses. Additional training parameters are de-
tailed in the Appendix. Notably, since the dataset sizes vary
for different settings, namely only real, only synthetic and
synth + real training, we ensure a fair comparison by set-
ting the same training iterations and adjusting the number
of training iterations to the equal iterations for 70 epochs of
the synth + real dataset setting.
Baseline methods. Our primary approach focuses on self-
comparisons based on our defined feasible and infeasible
settings. Specifically, we analyze CLIP classification per-
formance by training on either only synthetic or synth + real
data. To assess the impact of feasible or infeasible data on
classification performance, we use zero-shot CLIP perfor-
mance as a baseline. We also fine-tune CLIP on the original
real data; however, it is important to note that the purpose
of this work is to compare ID and OOD data, rather than
propose an image augmentation pipeline. Hence, the real
images should not be considered a competing method.
Evaluation protocol.

We use top-1 accuracy(%) to assess our model’s perfor-
mance. or a given test sample i, let ŷ(k)i denote the k-th
highest-ranked predicted label, and let yi represent the true
label. To validate whether the correctly learned set of one
model is a subset of another, we use the inclusion coeffi-
cient, defined as: Inclusion Coefficient = |A∩B|

|A| , where a
value closer to 1 indicates higher overlap between the two
models’ correct predictions. Additionally, we assess the
overlap in learned knowledge between the two models by
calculating the Jaccard index for the sets of correctly pre-
dicted samples across the test set, defined as J(A,B) =
|A∩B|
|A∪B| , where A and B represent the correctly classified
samples in two different training configurations. This met-
ric evaluates the extent of overlap between the correct pre-

R S Pets [44] AirC [40] Cars [32] Avg
F IF diff F IF diff F IF diff F IF

0-shot 91.0 23.8 63.2 59.3

Back. 95.4 95.3 0.1 86.8 84.1 0.7 93.7 93.8 -0.1 92.0 91.1
Color 94.5 94.4 0.1 80.8 81.6 0.2 91.6 91.5 0.1 89.0 89.1
Text.

✓
93.8 93.3 0.5 81.6 81.9 -0.3 90.9 86.8 4.1 88.8 87.3

Back. 95.3 95.3 0.0 88.0 88.4 -0.4 93.8 93.7 0.1 92.4 92.5
Color 95.3 95.2 0.1 84.6 84.0 0.6 92.7 92.5 0.2 90.9 90.5
Text.

✓ ✓
95.3 95.2 0.1 83.9 83.8 0.1 93.0 92.8 0.2 90.7 90.6

Real ✓ 95.2 84.5 92.6 90.8

Table 1. Top-1 performance using the full training set and syn-
thetic images generated by VariReal, with training setups includ-
ing synthetic-only and synth + real. All results use CLIP ViT-B/16
as the base classification model, with the number of synthetic im-
ages set to five times the number of real images. Datasets include
Oxford Pets (Pets), FGVC Aircraft (AirC), and Stanford Cars
(Cars). R/S means using real/synthetic images for fine-tuning.

diction sets from two models.
For dataset distribution analysis, we employ a com-

mon metric for evaluating the distance between gener-
ated and real data distributions: Fréchet Inception Distance
score [41]. Additionally, we calculate the CLIP Score, Dino
Score and LPIPS Score to measure data similarity: 1) CLIP
Score: We used the ViT-L/14 model [34]. 2) Dino Score:
We employed the DINOv2-Base [57] model for feature ex-
traction. 3) LPIPS Score: [59]: The Learned Perceptual
Image Patch Similarity score is used to capture fine-grained
visual differences between images.

4.2. Classification Performance with Minimal-
change Data

4.2.1. Accuracy Comparison
Table 1 compares model performance across four training
methods: baseline, synthetic-only, synth + real, and real-
only training. For synth + real training, we fix the synthetic
data volume at five times the number of real images, using
all available real images from the training set. First, we no-
tice that in almost all settings, the difference between the ID
and OOD data is less than 1%. Furthermore, ID data is not
universally better: for the Cars dataset [32], infeasible OOD
data performs better in three out of six scenarios. Our mod-
ified synthetic data is also able to outperform the original
real data in five out of eighteen synthetic-only settings.

To further validate the positive effect of minimal back-
ground changes, we experimented with feasible and infea-
sible background modifications on the binary classification
task using the WaterBirds [13] dataset. As shown in Table 2,
both feasible and infeasible background modifications en-
hance performance, with infeasible backgrounds yielding
even greater improvement than feasible ones by 5.79 per-
centage points in the synthetic-only setting and 1.68 per-
centage points in the real + synth setting.

4.2.2. Training with All Data
Next, we evaluate the effect of mixing feasibile and infea-
sible attributes. We create a synthetic dataset with balanced



R S WaterBirds [13]
F IF

0-shot Base 78.95

Back. ✓ 86.59 92.38
✓ ✓ 92.85 94.53

Real ✓ 85.66

Table 2. The top-1 performance using the full training set and
synthetic data, with training setups including synthetic-only and
synth. + real data. All results use CLIP ViT-B/16 as the base
classification model, with synthetic images set to five times the
number of real images. The attribute of experimented dataset Wa-
terBirds [13] is background.

R S Pets [44] AirC [40] Cars [32] Avg

0-shot Base 91.00 23.80 63.18 59.33

Back. 95.18 86.58 93.84 91.87
Color 94.14 81.85 92.14 89.38
Text.

✓
92.78 82.04 91.84 88.89

Back. 95.29 87.99 93.60 92.29
Color 95.02 83.36 92.77 90.37
Text.

✓ ✓
95.15 83.83 92.56 90.51

Real ✓ 95.23 84.54 95.59 90.79

Table 3. The top-1 performance results using the full training set
combined with a balanced mix of feasible and infeasible synthetic
data, with training setups including synthetic-only and synthetic +
full real data. All results use CLIP ViT-B/16 as the base classifi-
cation model, with synthetic images set to five times the number
of real images. Underlined values indicate performance improve-
ments over Table 1 after mixing feasible and infeasible data.

Figure 4. The averaged Inclusion and Jaccard index matrix for
three editing settings across three datasets. ”f” = feasible, ”if” =
infeasible, ”real” = training with real images.

samples from both the feasible and infeasible datasets, with
a total volume five times that of the real data for training.

In Table 3, we find similar overall classification results
as in Table 1. Combining feasible and infeasible data
even marginally improves final classification metrics com-
pared to separate training for synthetic-only training on the
AirC [40] and Cars [32] datasets, specifically for color and
texture on Aircraft and Cars.

4.3. Classification Results Analysis
We evaluate prediction correctness for each test sample to
determine if models learn similar knowledge under different
training settings. As shown in Figure 4 the Inclusion Matrix
shows that the knowledge learned by different model do not
have a subset relationship, so the pink box on the Jaccard
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Figure 5. The selected generation visualizations for the three
datasets. We only display the target prompt words, omitting de-
tailed descriptions for background and texture.

Background Color Texture

Pets

Cars

AirC

Figure 6. The FID score settings compared using feasible and in-
feasible settings acorss different dataset.

Matrix proves that while performance metrics are similar,
the underlying learned representations differ. Synth + real
training aligns predictions more closely with the baseline,
though the Jaccard index still diverges, indicating influence
from synthetic data.

4.4. Analysis of Minimal-Change Data
4.4.1. Qualitative Results
In addition to the data samples in the methodology sec-
tion, we sampled two more examples from each of the three
datasets. Due to space constraints, we present samples from
the Stanford Cars [32] dataset here; additional samples are
shown in Appendix. As shown in Figure 5, the generated
data meets our minimal-change criteria.

4.4.2. Distribution Analysis
We calculated the FID score [41] between generated and
real data per class as a measure of distribution similarity.
Additionally, we used CLIP Score, Dino Score, and LPIPS
for each synthetic-real data pair as similarity measures, not-
ing these provide only qualitative insights.

Figure 6 shows feasible samples resemble ID data due
to their similarity to the real training set. However, as dis-



Settings F CLIP Score↑ DINO Score↑ LPIPS↓
✓ 0.914 0.861 0.447Background 0.886 0.830 0.477

✓ 0.951 0.956 0.189Color 0.904 0.939 0.254

✓ 0.936 0.949 0.207Texture 0.898 0.925 0.218

Table 4. The average DINO score, CLIP score and LPIPS scores
calculated between generated synthetic image and corresponding
real images for three datasets. F means feasibility.

cussed in Section 4.3, color and texture modifications do
not improve model performance, likely because they disrupt
the original distribution. For instance, white is dominant in
our aircraft dataset, and adding multiple ”red” or ”yellow”
samples shifts color proportions, creating distribution shifts.
Even within matching colors, slight variations (e.g., differ-
ent shades of red) can alter the distribution.

This trend is also reflected in metrics in Table 4: fea-
sible data is generally closer to real data than infeasible
data. While CLIP and Dino Scores are similar across set-
tings due to their insensitivity to fine-grained details, LPIPS
captures subtle differences. However, as feasible data is de-
rived from real images, neither feasible nor infeasible data
scores closely match real data.

4.4.3. Scaling the Number of Training Images
All previous experiments used a ratio of five synthetic im-
ages per real image. However, similar to prior studies [26],
the synthetic-to-real data ratio can influence results. We
conducted a scaling experiment on the AirC [40] dataset
(and on the Pets [44] dataset, where results showed minimal
variation). For AirC, we used all real images and varied the
synthetic data from a 1:1 to a 5:1 ratio.

Results reveal a nonlinear trend with scale increases,
though turning points vary across settings. For color and
texture settings, peak performance slightly exceeds the
baseline, suggesting that when synthetic data diverges sig-
nificantly from real data, the benefits of OOD data may be
limited to a narrow range.

4.5. Ablation Study
In Figure 8, we ablate the expanded mask, which preserves
the spatial relationship between the object and background.
Without this adjustment, the generated image often displays
a ”floating” effect, where the object appears unnaturally in-
tegrated into its environment.

5. Conclusion
In this work, we use our VariReal pipeline to generate
minimal-change ID and OOD samples, so that we may in-
vestigate the essentialness of synthetic data feasibility to-
wards generating classifier training data. By systematically
altering background, color, and texture attributes, we create

Figure 7. The scaling experiment results for the FGVC-
Aircraft [40] dataset are shown for background, color, and texture
settings. The horizontal axis represents the scale factor for syn-
thetic images relative to real images. Here, the total real image
training set is used, with scale factors ranging from 1 to 5.

Figure 8. The ablation study for the usage to expand object mask
for background edition setting. We show the real generated prior
background on the left, and then present the different combined
image with real and prior image.

feasible and infeasible scenarios across three fine-grained
datasets. We evaluate the generated data by LoRA fine-
tune a CLIP model for classification. Although previous
literature assumes the importance of removing OOD data,
we show that feasibility in terms of background, color, and
texture may not significantly impact classification accuracy
when training with the generated data. Furthermore, mix-
ing ID and OOD samples also produces similar results. On
the other hand, proxy metrics such as FID, CLIP score, DI-
NOv2 score, and LPIPS show that ID data is closer to the
original dataset than the infeasible data; from this, we may
reconsider using these metrics as proxies for the effective-
ness of synthetic training data for classification.
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Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2:
Segment anything in images and videos. arXiv preprint
arXiv:2408.00714, 2024. 5

[48] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684–10695, 2022. 1, 2, 3, 6

[49] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international conference,
Munich, Germany, October 5-9, 2015, proceedings, part III
18, pages 234–241. Springer, 2015. 3

[50] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,
Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,
et al. Photorealistic text-to-image diffusion models with deep
language understanding. Advances in neural information
processing systems, 35:36479–36494, 2022. 3

[51] Mert Bülent Sarıyıldız, Karteek Alahari, Diane Larlus, and
Yannis Kalantidis. Fake it till you make it: Learning trans-
ferable representations from synthetic imagenet clones. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 8011–8021, 2023. 2

[52] Weijia Wu, Yuzhong Zhao, Mike Zheng Shou, Hong Zhou,
and Chunhua Shen. Diffumask: Synthesizing images with
pixel-level annotations for semantic segmentation using dif-
fusion models. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 1206–1217,
2023. 2

[53] Binxin Yang, Shuyang Gu, Bo Zhang, Ting Zhang, Xuejin
Chen, Xiaoyan Sun, Dong Chen, and Fang Wen. Paint by
example: Exemplar-based image editing with diffusion mod-
els. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 18381–18391,
2023. 3

[54] Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu.



Generalized out-of-distribution detection: A survey. Inter-
national Journal of Computer Vision, pages 1–28, 2024. 2

[55] Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-
adapter: Text compatible image prompt adapter for text-to-
image diffusion models. arXiv preprint arXiv:2308.06721,
2023. 3, 5, 6

[56] Zhuoran Yu, Chenchen Zhu, Sean Culatana, Raghuraman
Krishnamoorthi, Fanyi Xiao, and Yong Jae Lee. Diversify,
don’t fine-tune: Scaling up visual recognition training with
synthetic images. arXiv preprint arXiv:2312.02253, 2023. 2

[57] Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun
Zhu, Lionel M Ni, and Heung-Yeung Shum. Dino: Detr
with improved denoising anchor boxes for end-to-end object
detection. arXiv preprint arXiv:2203.03605, 2022. 1, 6

[58] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 3836–3847, 2023. 3, 4, 5, 6

[59] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 586–595, 2018. 6

[60] Shu Zhang, Xinyi Yang, Yihao Feng, Can Qin, Chia-Chih
Chen, Ning Yu, Zeyuan Chen, Huan Wang, Silvio Savarese,
Stefano Ermon, et al. Hive: Harnessing human feedback for
instructional visual editing. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 9026–9036, 2024. 3

[61] Fan Zhou, Zengzhi Wang, Qian Liu, Junlong Li, and
Pengfei Liu. Programming every example: Lifting pre-
training data quality like experts at scale. arXiv preprint
arXiv:2409.17115, 2024. 1



Does Feasibility Matter? Understanding In- and Out-of-Distribution Data
Impact in Synthetic Training Datasets for Classification

Supplementary Material

6. Broader Impacts and Limitations
Our VariReal generation pipeline focuses on creating fea-
sible and infeasible image pairs for downstream tasks but
has the potential to extend to other applications. It pro-
vides a robust method for modifying backgrounds, colors,
and textures in arbitrary input prompts and real images. For
instance, it can be used in image editing tasks requiring
background, color, and texture changes while preserving
other areas. VariReal could also serve as a dataset gener-
ation pipeline to fine-tune Stable Diffusion models for text-
guided image editing, enabling precise modifications based
on prompts.

This work highlights the importance of feasibility in
classification tasks, showing that strict adherence to the real
data domain for backgrounds, colors, and textures is un-
necessary. Text-guided synthetic data generation can pri-
oritize style and significant object descriptions. VariReal
can also be used for data augmentation, demonstrating that
augmenting both feasible and infeasible backgrounds im-
proves classification performance, unlike ALIA [13], which
focuses only on feasible backgrounds.

Our approach primarily targets datasets with clear fore-
ground and background and focuses on classification tasks
due to its minimal-change setting. Future work could ex-
plore its applicability to more diverse and larger datasets, as
well as general tasks. Due to resource limitations, we tested
three attributes (background, color, texture) but additional
attributes, such as lighting, could be investigated for feasi-
bility. Developing a unified method for single-step minimal
changes across multiple attributes would further enhance
scalability and applicability.

7. Other Image Editing Methods
As shown in Figure 1, we compare our VariReal
method with InstructPix2Pix [6] and FPE [35]. To
ensure fairness and maximize the advantages of each
model, we follow the original usage guidelines. For
FPE, we retain the aspect ratio through resizing and
padding to the specified size, and we use the origi-
nal model training or best-performing prompts. For
instance, FPE employs prompts like "a [CLS] in
the [ATTRIBUTE] background" for background
changes and "a [ATTRIBUTE] [CLS]" for color or
texture edits. The [CLS] here is the correspond-
ing class names, while the [ATTRIBUTE] represents
the feasible or infeasible prompts generated as Sec-

tion 3.2.1. Similarly, InstructPix2Pix uses prompts such
as "put it in [ATTRIBUTE] background" for
background changes and "make it a [ATTRIBUTE]
aircraft" for color and texture modifications. We
conducted multiple experiments and selected the best-
generated images for comparison.

8. Method Details
8.1. Guidance Prompt

Prompt Example. + Please give me 30 different feasible 

backgrounds for the class pets, in the meantime, also give 

me corresponding detailed descriptions for the given 

feasible backgrounds. 

- 'living room: A cozy space with a couch, a coffee table, 

and a dog bed near a window’,

 'snowy field: A wide, open field covered in snow, with 

trees dusted with snow in the background',

…

- 'urban plaza: A bustling city square with people, outdoor 

cafes, and pigeons fluttering about',

Can you modify or filter your answers to ensure each 

background is definitely feasible for class pets? If you can’t 

guarantee some of the answers, please delete and ignore the 

background.

- 'living room: A cozy space …’,

- 'snowy field: A wide, open field covered …',

…

- 'urban plaza: A bustling city square with people …',

Figure 9. The generated attributes(prompt words) and self-filtering
process using ChatGPT-4 [1].

As detailed in Section 3.2.1 and shown in Figure 9, the
prompt generation process includes initial prompt genera-
tion and preliminary checks. The following prompt is used
for preliminary checks:

"Can you modify or filter your
answers to ensure each
[background/color/texture] is
definitely [feasible/infeasible]
for class [CLASS]? Please delete
and ignore some of the answers
if you can’t guarantee them."

For example, ”snowy field” is not a feasible background
for the pets class in the initial generation results and is fil-
tered out by ChatGPT. To ensure feasible attributes align
with the training set, we manually check the existing back-
grounds, colors, and textures in the training data and remove
those absent from it. Table 1 shows the acceptance ratio at
each stage.



Background Color(Per CLS) Texture

Pets AirC Cars Pets AirC Cars Pets(Per CLS) AirC Cars
F IF F IF F IF F IF F IF F IF F IF F IF F IF

Raw output 50 70 50 70 50 70 10 10 10 10 10 10 8 50 30 50 15 70
Auto-filtering 47 64 36 68 44 67 6∼7 8∼9 7∼8 8∼9 7∼8 8∼10 7 42 25 46 12 64

Manual-filtering 43 50 22 50 31 50 5 5 5∼8 5∼6 5 5 5 27 24 44 7 57

Final Accept Rate 0.86 0.714286 0.44 0.71429 0.62 0.71429 0.5 0.5 0.5∼0.8 0.5∼0.8 0.5 0.5 0.625 0.54 0.8 0.88 0.467 0.814

Table 5. The number of prompts which are generated initially by LLM, after self-filtering and manual-filtering for each specific settings
and some datasets. The Pets, AirC, Cars refer to our experimental dataset introduced in 4.1.

Specifically, for the guidance prompt generation, We use
ChatGPT [1] to generate feasible or infeasible attributes
(prompt words), which are then combined into a final
prompt using our template: ”a photo of a [CLS]”, as shown
in Figure 9. An example of generated attributes is the fol-
lowing, where the placeholders [ATTRIBUTE] represents
the feasible/infeasible background, color, or texture, and
[CLASS] represents a specific class.

Prompt Example. ”Task: As an AI language model,
generate [Attribute] where the given class of objects
typically exists (’feasible’) and where they absolutely
cannot exist (’unfeasible’). For each [Attribute], pro-
vide a one-sentence description detailing its visual
appearance. You should adhere to the specified cri-
teria.

Criteria:
1. Unique [Attribute]: Ensure each listed [Attribute]

is distinct and not synonymous with others pro-
vided.

2. Empty List Handling: If no unfeasible back-
grounds can be identified, use ’EMPTY’ to denote
this.

3. Format Requirement: Answers must be formatted
as a Python list, following the structure shown in
the ’Answer’ section of the ’Example’.
Positive Example:

• Object Class: [CLASS]
• Question: Provide five different [Attribute] for the

object class, each accompanied by a concise visual
description.

• Answer:
– ...
Negative Examples:

• The answers are not acceptable as follows:
– ...

• Reasons: ...
Question: Please give me [NUMBER] different

[Attribute] for the class [CLASS]; in the meantime,
also give me corresponding detailed descriptions for
the given [Attribute].

Here we also give one specific example for generat-

ing feasible and infeasible background for Oxford Pets
dataset [44] after replacing the placeholders in the above
template.
Task: As an AI language model,

generate backgrounds where the given
class of objects typically exists
(’feasible’) and where they absolutely
cannot exist (’unfeasible’). For each
background, provide a one-sentence
description detailing its visual
appearance. The description should
be vivid and adhere to the specified
criteria.
Criteria:

1. Feasible Backgrounds: Identify
environments where the object class
naturally occurs in the real world.

2. Unfeasible Backgrounds: Identify
environments where the object class
cannot naturally or logically be
present. Avoid fantastical or
scientifically impossible scenarios
(e.g., "inside a sun").

3. Unique Backgrounds: Ensure each
background is distinct and does not
overlap in meaning with others.

4. Empty List Handling: If no
unfeasible backgrounds can be
identified, use ’EMPTY’ to denote
this.

5. Format Requirement: Responses must
be formatted as a Python list,
following the structure provided
in the ’Example’ section.
Positive Example:

1. Object Class: Dog
2. Question: Provide five different

unfeasible backgrounds for a dog,
each accompanied by a concise visual
description.

3. Answer:
(a) ’underwater coral reef: A

vibrant underwater scene filled



with colorful corals, schools
of fish, and shimmering light
filtering through the water
surface.’

(b) ’volcano crater: A rugged,
rocky landscape with molten
lava, steam vents, and an eerie
red glow from the molten rock
below.’

(c) ’deep space station: A sterile,
futuristic interior filled with
advanced technology, floating
objects, and a view of the
infinite void of space outside.’

(d) ’airplane cockpit: A confined,
high-tech space with multiple
control panels, screens, and a
view of the clouds through the
windshield.’

(e) ’desert dunes: A vast, arid
landscape with rolling sand
dunes, scorching heat, and
sparse vegetation under a
blazing sun.’

Negative Examples:
1. The following answers are not

acceptable:
(a) ’industrial furnace room: A

high-temperature environment
with large furnaces used for
metal smelting, filled with
intense heat and noise.’

(b) ’operating theater: A sterile
room in a hospital where
surgeries are performed,
requiring a clean and controlled
environment.’

2. Reasons:
(a) Responses are not in a proper

Python list format (e.g., [’’,
’’, ..., ’’]).

(b) Descriptions should focus on
specific visual elements (e.g.,
objects, colors, lighting)
instead of abstract concepts
like "unsuitable for pets."

(c) Example descriptions should
include more visual details,
e.g., "a large furnace with
workers and glowing red-hot
objects."

Question:
1. Please generate 20 different

feasible and unfeasible backgrounds,
respectively, for the class ’pets.’

2. Additionally, provide detailed
visual descriptions for each
background.

By using the prompts describe above, we also select
some generated attributes (prompt words) to replace the
placeholder in the prompt template. Due to space limita-
tions, we provide up to five attributes as an example for the
Oxford Pets [44] dataset. The following lists the feasible
attributes:
Feasible Prompt Word Examples from

Pets. Background:
• suburban backyard: A grassy area with
a wooden fence, a few trees, and a
doghouse in one corner.

• city park: A green space with open
fields, walking paths, and other
people walking their dogs.

• ...
• rural countryside: Rolling hills with
grazing cows, wooden fences, and a
distant farmhouse.

• patio: A stone patio with outdoor
furniture, potted plants, and a view
of the garden.
Color:

• Abyssinian: ruddy, blue gray, silver,
fawn, fawn.

• American Bulldog: white, brindle,
brown, fawn, brown.

• American Pit Bull Terrier: blue gray,
fawn, black, white, brown.

• ...
• Wheaten Terrier: wheaten, golden,
wheaten, wheaten, golden.

• Yorkshire Terrier: blue gray, tan,
black, gold, tan.
Texture:

• Abyssinian:
– ruddy ticked coat: warm ruddy brown
fur with black ticking throughout.

– sorrel coat: light reddish-brown
fur with coppery tones.

– blue coat: soft blue-gray fur with
warm undertones.

– fawn coat: light cream-colored fur
with a gentle rose tint.

– chocolate ticked coat: rich
chocolate fur with lighter ticking.

• ...
• Yorkshire Terrier:

– steel blue and tan coat: long,



silky fur in steel blue with tan
points.

– black and tan coat: shiny black fur
with tan points.

– golden tan coat: long fur in a rich
golden tan color.

– blue and gold coat: dark blue fur
with golden tan accents.

– silver and tan coat: light silver
fur with warm tan points.

The following gives us the infeasible attributes exam-
ples:

Infeasible Prompt Word Examples from
Pets.

Background:
• space station: A high-tech interior
with floating objects, control panels,
and a view of Earth through a window.

• deep sea: A dark, underwater
environment with bioluminescent
creatures and no sunlight.

• volcano interior: A fiery landscape
with flowing lava, molten rocks, and
intense heat.

• ...
• mars surface: A barren, reddish
landscape with rocks, dust, and no
signs of life.
Color:

• Abyssinian: purple, blue, pink,
orange, neon green.

• American Bulldog: purple, pink, blue,
green, yellow.

• American Pit Bull Terrier: purple,
green, blue, orange, pink.

• ...
• Wheaten Terrier: green, purple, blue,
yellow, pink.

• Yorkshire Terrier: green, purple,
blue, yellow, orange.
Texture:

• elephant skin texture: characterized
by thick, rough, and wrinkled
surfaces, with deep creases.

• wood grain: parallel grooves and
rings resembling tree bark, with a
natural flow pattern typically seen in
wooden planks.

• ...
• metallic scales: small, shiny scales
arranged in an overlapping pattern.

Figure 10. The automatic filtering process using a MLLM model
to filter the generated images using pre-defined qustions to check
certain aspect for the generated image and ground truth answers.

8.2. Automatic Filtering
As introduced in Section 3.2.3, we present the filtering
questions for background, color, and texture changes. These
checks ensure that the generated attributes align with the
text prompt. For background attributes, we also verify if
the foreground objects are feasible within the given back-
ground. Using placeholders for each background, color,
texture prompt, object class, and feasibility information, we
formulate questions based on the following filtering ques-
tion template.

Background-related questions:
• Question 1: Is the object in the image located

in the [BACKGROUND] environment?
Choices: [’yes’, ’no’] Answer: ’yes’

• Question 2: Does the image background
represent [BACKGROUND]? Choices: [’yes’,
’no’] Answer: ’yes’

• Question 3: Does the [BACKGROUND] look
feasible for the [CLS]? Choices: [’yes’, ’no’]
Answer: ’yes’ if [FEASIBLE] else ’no’

• Question 4: Is it possible for the [CLS] in this
image to exist in the real world with its
background? Choices: [’yes’, ’no’] Answer:
’yes’ if [FEASIBLE] else ’no’

Note: The placeholder [CLS] represents the
current class name, [BACKGROUND]
represents the target background being
generated, and [FEASIBLE] denotes its
feasibility.

If we change the color and texture, we use the following
questions:

Color and Texture-related questions:

• Question 1: Does the image show a
[COLOR/TEXTURE] [CLS]? Choices: [’yes’,
’no’] Answer: ’yes’



• Question 2: Is the [COLOR/TEXTURE]
feasible for the [CLS]? Choices: [’yes’, ’no’]
Answer: ’yes’ if [FEASIBLE] else ’no’

Note: The placeholders retain similar meanings
as above, where [COLOR/TEXTURE] indicates
the current target appearance being generated.

9. Implementation Details
We provide additional implementation details for VariReal
generation in Table 6. For instance, noise strength is a key
parameter for the SDXL Inpainting model [39], and the
strength of the IP-Adaptor [55] conditions ControlNet [58].
Different datasets and the generation of feasible vs. infea-
sible datasets often vary in difficulty, so we use dataset-
specific parameters.

Following the approach in DataDream [27] for classi-
fication tasks, we experiment with different learning rates
and weight decay. Specifically, we use a batch size of
64, AdamW [29] as the optimizer, and a cosine annealing
scheduler. Table 7 details the CLIP [34] fine-tuning param-
eters. For learning rates and weight decay, we search within
a range and select the best-performing configuration as the
final result. Additionally, we fix the number of iterations as
mentioned in Section 4.1, with the table specifying iteration
counts for each dataset.

10. Qualitative Examples
We provide additional qualitative examples to demonstrate
the generation quality of our VariReal method. One ad-
ditional example from the Oxford Pets [44], FGVC Air-
craft [40], and Stanford Cars [32] datasets is included, along
with one randomly selected example across these datasets.

Figure 11 shows the Abyssinian pet generation results,
where our VariReal method produces more detailed back-
grounds, such as ”active war zone.” Figure 12 presents a
Spitfire aircraft sample, illustrating snow in the background
”arctic tundra landing strip.” Figure 13 features a BMW X3
SUV 2012 example. All color and texture changes align
with the text prompt requirements. Finally, Figure 14 pro-
vides randomly selected examples from the three datasets
for further visualization.



Back. Color Texture

Parameters Pets AirC Cars Pets AirC Cars Pets AirC Cars
F IF F IF F IF F IF F IF F IF F IF F IF F IF

Guidance Scale for SDXL Inpainting [39] 40 7.5 7.5 12 12 30 12 8 30

Guidance Scale for ControNet [58] - 7.5 7.5

Strength for SDXL 0.99 0.95 0.9 0.3 0.8 0.85 0.3 0.3 0.65 0.3 0.65 0.3

IP-Adptor [55] Strength - 0.7 0.4 0.4 0.2 0.5 0.65 0.4 0.65 0.4

Inference Step for SD 20 - 15

Inference Step for SDXL Inpainting 30 20 20

Inference Step for ControlNet - 30 30

Mask dilated factor/alpha factor 120 50 25 0.3 0.6 0.6 0.5 0.4 0.5 0.65 0.65 0.65

Table 6. The detailed generation parameters for VariReal. We introduce the parameters for feasible and infeasible settings of three dataset
respectively.

HyperParameters lamda lr Min lr Weight decay Warm up steps CLIP LoRA rank CLIP LoRA alpha

Values 0.5 {1e-3,5e-4,1e-4,5e-5,1e-5} 1e-08 1e-03, 1e-4, 5e-5 5% total iterations 16 32

HyperParameters Training bs Test bs Train iterations Val iterations Data augmentation

Values 64 8 Pets:20700/AirC:72000/Cars:91840 1/70 Train iterations random resized crop, random horizontal flip, random color jitter, and
random gray scale

Table 7. The hyper-parameter details for CLIP [34] model fine-tuning.
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Figure 11. Qualitative results of the class Abyssinian from Oxford Pets dataset [44], created the same as Figure 5.
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Figure 12. Qualitative results of the class Spitfire from Fgvc-
Aircraft dataset [40], created the same as Figure 5.
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Figure 13. TQualitative results of the class BMW X3 SUV 2012
from Stanford Cars dataset [32], created the same as Figure 5.
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Figure 14. Randomly selected generated samples across three datasets and feasibility attributes are shown. For visualization purposes, all
images are resized to the same dimensions.
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