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Abstract

RetinoPath aims to use state-of-the-art deep-learning-
based methods for retinal disease progression analysis us-
ing longitudinal sequential images as input. To unveil the
complex patterns and mechanisms underlying various reti-
nal disorders, we first analyze and summarize the related
work and datasets in this field and search for several base-
lines to be the suitable candidate for this task. Since we can-
not access any dataset in this field, we generate synthetic
datasets to conduct some ablation studies of our baselines.
The main objective is to carry on a series of experiments
and make comparisons of different model architectures us-
ing possible baselines to seek the opportunity to improve
early detection and predict disease progression trajectory.

1 Introduction

Disease progression trajectory prediction aims to fore-
cast future clinical conditions of patients based on lon-
gitudinal data, such as electronic health records (EHRs),
biomarkers and medical images.[1] The objective is to pro-
vide medical personnel with predictive tools that can sup-
port disease diagnosis, enhance treatment strategies, assist
clinical decisions, and improve clinical outcomes.[2]

A broad-spectrum of methodologies have been applied
to the disease prediction field, from logistic regression to
more sophisticated deep learning models, also techniques
such as ensembles models and trajectory clustering. Most
of these models employ comprehensive longitudinal EHR
data or medical codes.[3] Data is a key aspect for machine
learning models, as longitudinal medical data has several
challenges. In fact a comprehensive model should be able
to deal with problems such as missing data, data hetero-
geneity, unregular time intervals between sessions, and high
dimensionality.

The goal of this project is to adapt existing image pre-
diction methods to longitudinal retinal images, resulting in

future images that doctors can use to make more informed
decisions. In addition to this, complementary techniques,
such as disease classification and severity, were explored to
lay the foundation for a more comprehensive future method-
ology.

2 Related Works

As we discuss above, there are various different inputs
that can be used for retinal disease progression prediction.
For this task and similar fields, most works use medical
codes (including EHR data and bio-markers)[4] or a single
image as input to make some prediction[5]. Due to space
reasons, in this part, we mainly focus on works using se-
quential images as input. We will answer three main issues:
how to encode the input sequential images, which kind of
sequential models to use, and which kind of prediction we
want to know.

2.1 Encode the Input Images

About how to transfer images to the feature embed-
dings that the model can accept, we summarize the methods
shown in Figure 1. There are two general methods: ”whole
image processing” and ”patch partition”. While the first one
means the unit where we process images is at least using a
single whole image, which is in contrast to the patch divi-
sion. The patch partition will divide an image into multiple
small pieces.[6]

The ”whole image processing” methods are very
straightforward and easy to implement. As for each sin-
gle image, we can use a classical backbone like VGG16 [7]
or ResNet101 [8] to separately extract the sequential feature
vectors or feature maps. The temporal information will be
captured by the following sequential models. In contrast,
the 3D Convolution [9] gives us the chance to encode the
image inputs considering the temporal information in the
mean time. However, we need to consider how to design



Figure 1. Summary of methods to encode the
input images.

the sequential model architectures to process single feature
map output.[10]

The ”parch partition” arises from the vision transformer,
we divide a single image input into several small blocks,
and then extract features of each blocks as the tokens.[6]
The first method of this is a very direct way to divide
each sequential image into several patches and concate-
nate them together[11], but it will be very computationally
consuming. One step further to improve the computation
efficiency[11] is to divide the patches along with the tem-
poral axis. However this method still lacks the information
exchange between the neighboring patches, so we introduce
a changed patch size to get the connection between different
patches without more computation cost.[12]

For our baseline implementation, we finally choose the
Autoencoder to get the bottleneck layer as the following
model’s input.

2.2 Sequential Models

After getting the embeddings of the inputs, we need a se-
quential model to process these embeddings. The sequen-
tial model here is a broad concept, which means the model
can process sequential input. The classical model concept
like RNN [13], LSTM [13] and Transformer [14] are in-
cluded. We generally categorize the models into three parts:
Stacked RNN/LSTM, models combined with Autoencoder,
and generative models as shown in Figure 2.

As the name means, Stacked RNN/LSTM uses several
RNN/LSTM blocks to process the sequential input, and to
adapt the image input, we should use the convolution net-
work as an internal component of RNN or LSTM [15]. Sim-
ilar to this kind of architecture, we can directly use RNN or
LSTM models with an Autoencoder model to process se-
quential information [16]. Due to the training of RNN and

Figure 2. Summary of different sequential
models.

LSTM not being in parallel, and the receptive field and pro-
cess sequence length are limited, the more popular architec-
ture transformer [14] can also be used for sequential input.
The only problem with the transformer is training process
is very time and resources expensive[17]. As a result, some
small and robust CNN models[18] also perform very well.
To using CNN to process the temporal information, we need
to specially design CNN layers. You can check our base-
lines and their categories in Section 4.

2.3 Process the Output

One important variable in the disease progression is
which kind of indicators are used to check the future possi-
ble development. In the disease prediction field, the output
of the model can be categorized into disease sequence pre-
diction, disease trajectory forecasting [19], severity or co-
morbidity risk prediction [20], and future disease images.
There are several methods to process the output features of
a model, simply we can add some linear layers [21] or atten-
tion layers [22] to fusion the information and get the specific
variable we want to get, such as the severity or comorbidity
risk and the parameters of disease trajectory curve[20].

Since there are not many models for predicting disease
trajectories, we decided to focus on predicting future dis-
ease images. Besides, the output of future images can also
help us interpret the model. The goal would be to classify
these images according to disease severity at a later stage.

3 Datasets

When it comes to longitudinal retinal datasets, there are a
few problems. The first is that there are no public datasets.
While there are some public retinal datasets, they are not
longitudinal. Moreover, there are very few datasets with
additional patient information. Some authors are not inter-
ested in sharing their dataset. And lastly, there are privacy
issues and legal restrictions with sharing medical datasets.
Following is a list of interesting (non-public) longitudinal
datasets.

• HARBOR study (monthly spectral-domain OCT for
AMD, 1097 patients, 24 images each)[23]



• RISE and RIDE datasets (stereoscopic 7-field CFPs,
764 patients, 3 each)[24]

• INSIGHT datasets (13 datasets, OCT and fundus im-
ages with additional patient information[25]

• Moorfields exAMD dataset (8692 patients, 1994798
images, fundus and OCT images, AMD)

• Klinkum rechts der Isar dataset (OCT and fundus im-
ages with patient information)

Since the process of requesting access to datasets takes
long, the ChestX-ray8[26] dataset was used for intermedi-
ate testing. It is a Chest X-ray Dataset of 14 Common Tho-
rax Disease Categories and includes 112.120 images with
additional patient information like age and gender. Since
the purpose of this project was to predict the disease pro-
gression with longitudinal images and not to classify the
disease, the data was cleaned to restrict the dataset to only
one disease pattern and every patient has five images, where
four images are used as input and the fifth is used for predic-
tion. The final dataset contains 4245 images of 849 patients.

Since we were not provided with a longitudinal retinal
dataset, we created two synthetic datasets. For each dataset
30 images were generated and 20 of them randomly selected
for the dataset. This should simulate unregular time inter-
vals in real medical datasets. The eye and disease position
is random for each patient and each patient has a different
disease growing rate. Each dataset contains 10000 patients.
For each patient 10 images were used as input and 10 were
predicted.

Figure 3. One sample of synthetic dataset 1.

The first synthetic dataset should model different pro-
gression of the AMD disease for different patients. The
form of the disease is random growing and the opacy which
is added for each time step decreases with time. The sever-
ity and the spread of the disease varies between patients.
One sample can be seen in Figure 3.

The purpose of the second dataset was to create im-
ages with growing circles with changing colors to evaluate

Figure 4. One sample of synthetic dataset 2.

Table 1. Baselines.
Class Method Input/Prediction

AE + CNN SimVP[18] Images/Images
AE + CNN WALDO[27] Images/Images

AE + LSTM LMC[28] Images/Images
AE+Trans. VPTR[17] Images/Images
AE+Trans. ClinicalGAN[19] Medical code
Foundation RetFound[29] Images/Disease class

GAN StyleGAN2[30] Images/Images
Diffusion SADM[31] Images/Images
Diffusion RVD[32] Images/Images

whether models can understand this simple development.
One sample can be seen in Figure 4.

4 Baselines

In Table 1 an overview of all baselines can be seen. Tak-
ing into account model category comprehensiveness, we
also consider choosing more models that may have more
advantages. Only ClinicalGAN, RetFound, and SADM are
medical models, the others are models for predicting future
video frames and have been adapted for the medical case.
The details of each baseline will be introduced briefly in
Section 5, and the illustration images of each baseline can
be found in Appendix A. We conduct the Experiments on
these baselines using ChestX-ray8[26], Synthetic dataset 1,
and Synthetic dataset 2. For the ChestX-ray8[26] dataset,
we input 4 past images to output 1 future image. And for
Synthetic datasets 1 and 2, we input 10 past images to out-
put 10 future images.

5 Experiments

5.1 Evaluation Metrics

In the context of predicting future medical images from
longitudinal data, the evaluation of models is crucial for



Figure 5. One sample of the segmentation
map.

Figure 6. One sample of the flow map.

their clinical utility. Mean Squared Error (MSE) measures
the average squared difference between the predicted and
actual pixel values, highlighting overall accuracy but not
necessarily perceptual quality. Structural Similarity Index
(SSIM) assesses the perceptual similarity in terms of lumi-
nance, contrast, and structure, which are essential for eval-
uating the perceptual quality and clinical relevance of med-
ical images. Peak Signal-to-Noise Ratio (PSNR) quantifies
image fidelity and is especially relevant when preserving
fine details is critical, such as in medical images. Learned
Perceptual Image Patch Similarity (LPIPS) measures the
distance between feature representations at different scales,
which is crucial in medical imaging since important details
are at varying levels.

5.2 Sub-optimal Baseline Results

5.2.1 WALDO

For WALDO segmentation and flow maps are needed as in-
put. The segmentation maps are created during the creation
of the datasets. The disease area is segmented in red, the
eye in blue and the background in black as can be seen in
Figure 5. For the creation of the flow maps the function cal-
cOpticalFlowFarneback of cv2 was used and the result can
be seen in Figure 6.

5.2.2 SADM

SADM is a sequence-aware diffusion model, which is op-
timized for the medical case, as it is robust towards se-
quences with various lengths, missing data or frames and
high dimensionality.[31] It was not capable of learning the
dataset representation. The reason could be changes in the
model, as the original model accepted only 3D inputs but
the images used in this project were 2D. Another reason
could be that the published code was only the minimal code

Figure 7. Prediction of SADM on the left and
prediction of RVD on the right.

and the author stated that the published model would there-
fore not give the same result as in the publication[31]. Pre-
dictions of SADM only consists of noise as can be seen in
Figure 7 on the left.

5.2.3 RVD

RVD[32] combines RNNs with a diffusion probabilistic
model. It successively generates future images by first using
RNNs to predict the next frame and then corrects this frame
with a stochastic residual generated by an inverse diffusion
process. RVD is only capable of predicting the eye shape
and cannot identify the disease area, as can be seen in Fig-
ure 7 on the right.

5.2.4 RETFound

RETFound [29] is a foundation model for retinal images
that learns generalizable representations from unlabeled
retinal images and is adaptable for various applications, in-
cluding ocular disease classification and severity prediction.
The methodology comprises in two stages. In the first stage,
RETFound undergoes pretraining via SSL, employing the
masked autoencoder. During this phase, the model acquires
representations through a pretext task, enabling it to capture
retina-specific context, including vital anatomical structures
that serve as potential indicators for neurodegenerative and
cardiovascular diseases. In the second stage, the acquired
knowledge is utilized to fine-tune the pretrained model for
specific downstream disease detection tasks.

We conducted RETFound fine-tuning using our synthetic
dataset with the objective of predict disease severity. How-
ever, it is important to note that due to time constraints,
we were unable to complete an exhaustive training process.
Upon evaluation, the model achieved a categorical accuracy
of 0.5756 on the test dataset. It is essential to consider the
limitations imposed by the synthetic dataset and shortened
training duration. Further refinements in model parameters
and additional training could potentially lead to improved
predictive performance.



Figure 8. Prediction of one sample (above) compared the ground truth (below).

Table 2. Evaluation metrics on test set af-
ter different number of epochs of synthetic
dataset 1.

# of epochs MSE↓ PSNR↑ LPSIS↓ SSIM↑
50 62.766 24.849 0.327 0.785

100 46.225 27.514 0.203 0.745
1000 10.907 34.783 0.020 0.970

10000 8.689 36.460 0.019 0.974
100000 8.227 37.038 0.012 0.978

5.3 Optimal Baseline Result with Abla-
tion Studies

5.3.1 LMC

LMC[28] is a video prediction model which recalls long-
term motion context via memory alignment learning. Dur-
ing training it stores the long-term motion contexts into
the memory and during testing, the input sequences are
matched with the sequences in the memory. Additionally it
incorporates and ConvLSTM to predict the future images.
It was trained and tested on both dataset 1 and dataset 2.
After different number of epochs the model was tested on
the hold-out test set and the quantitative results can be seen
in Table 2 and Table 3. The best trade-off between training
time and accuracy is 1000 epochs for both datasets. The
qualitative results for one sample can be seen in Figure 8
for dataset 1. As can be observed the results are accurate as
the model is capable of identifying the correct disease area
and severity.

5.3.2 SimVP

SimVP[18] means ”Simpler yet Better Video Prediction”,
the authors want to show that some smaller models can also
outperform the large and complex models. As a result, this
model uses pure CNN architectures to process the sequen-
tial image input. From the Figure 13 from Appendix A,

Table 3. Evaluation metrics on test set af-
ter different number of epochs of synthetic
dataset 2.

# of epochs MSE↓ PSNR↑ LPSIS↓ SSIM↑
50 56.075 25.559 0.328 0.782

100 55.113 26.495 0.269 0.741
1000 22.801 31.991 0.038 0.940

10000 15.353 34.225 0.029 0.963
100000 18.045 34.038 0.026 0.964

Figure 9. The best output experiment result
of SimVP model.

the model deploys the Autoencoder architecture to extract
feature embeddings. The core here is to design a pyramid
connection form using Inception modules to only convolute
T × C channels on (H, W). In this way, it can learn temporal
evolution.

We conduct some ablation studies within the SimVP[18]
model using Synthetic Dataset 1. Following the controlled
variable principle, we conduct a total of four groups of ab-
lation studies to show the effect of different input data aug-
mentation, training samples, and learning rates in Table 4.
For the SimVP[18] model, colored or gray inputs can both
achieve decent and comparable quantitative results. Note
that the MSE criterion will calculate the sum number of



three channels for the colored input, so the numbers are
larger than gray images. Besides, it is not necessary for
this kind of smaller CNN model to input large amounts of
samples. What’s more, we observe that the results don’t
get better after around 200 epochs, so we consider the train-
ing loss back-propagation oscillating, and we add a learning
rate scheduler to let the loss decrease more. The predic-
tion sample is shown in Figure 9, the disease area shape
and growth tendency are almost right.But the quantitative
results are not good as LMC in Section 5.3.1.

5.3.3 VPTR and ClinicalGAN

The baselines VPTR[17] and ClinicalGAN[19] are both
based on transformer[14] architectures combined with Au-
toencoder as explained in Section 2. The training process
is divided into two stages and therefore we will introduce
these two baselines together. The first training stage is
ResNet-based Autoencoder training shown in Figure 10.
Note the difference here for these two models is the size
of bottleneck layer. The VPTR transformer[17] has spe-
cial spatial-temporal attention layers, so the bottleneck is a
feature map. However, the ClinicalGAN[19] model uses a
classical transformer and the input token should be a fea-
ture vector, so we need an additional linear layer or average
pooling layer to map the feature maps to vectors.

Figure 10. The first training stage of VPTR
and ClinicalGAN.

The results of ablation studies can be found in the Ta-
ble 5 and Table 6 in the Appendix C. The organization is
similar to the SimVP[18] baseline. But for the VPTR[17]
and ClincialGAN[19], the grayed images can achieve much
better results than the colored images. We analyze the rea-
sons due to the model will more focus on learning the colors
instead of the area and trend of the disease. For the Autoen-
coder training, training with or without GAN framework do
not have any effect. Also for the ClinialGAN Autoencoder,
we mainly investigate how to map the feature maps to fea-
ture vectors. The quantitative result shows the linear layer
can keep more information and is slightly better than using
the average pooling. Besides, due to the information loss
during the mapping process, we must use a large amount

of data to let the model learn more knowledge about the
dataset. We choose the best Autoencoder model and freeze
the weights to train the following transformer models. The
intuitive results can be found in Figure 21 and Figure 23
from Appendix B.

The second training stage is transformer training. As
we talk above, the authors of VPTR design special atten-
tion layers to achieve efficient transformer calculation for
spatial—temporal input. The first attention layer operates
on the spatial size like the vision transformer[6], it divides
the feature map into several patches and calculates atten-
tion. The second attention layer is along the temporal se-
quence to capture the relationship between the sequential
inputs. For the ClinicalGAN baseline, the novelty is the
model combines the transformer and GAN architecture like
TransGAN[33] architecture. The generator of GAN is the
encoder and decoder of the transformer, the discriminator
only uses the encoder part of the transformer to identify
the future ground truth images and predicted future images,
which is shown in Figure 11.

Figure 11. The second training stage of VPTR
and ClinicalGAN.

As the ClinicalGAN originally uses medical codes as in-
put and output, we modify the data loader, model architec-
ture, loss functions, and training script to adapt to the image
input. We add the GAN training framework to the VPTR
to let the model output better-quality images instead of re-
peated future images.[17] We do not have many good re-
sults for this training part. You can check intuitive results
from Figure 22 from Appendix B. As before, we conducted
several experiments to investigate how to output good re-
sults. In the experiments, we find transformer training is
much more data-hungry than our imagination. So without
a large amount of input data, we are not able to get good
results, which can be checked by Table 7 and Table 8 in the
Appendix C.

In the tables, we can see the quantitative result increases
a lot with more training data. The result is shown in Fig-
ure 12. However, with a large amount of data, it is diffi-
cult to train the transformer from scratch. One problem is



Table 4. Ablation studies within SimVP[18] model using synthetic dataset 1.

Item Input Patients
Number

Epochs/Training
Time

Batch Size/Learning
Rate MSE↓ PSNR↑ LPSIS↓ SSIM↑

1 Colored
images 1000 2000 epochs/13 h on

a RTX 3090 GPU 32/Fixed = 0.02 620.5929 19.8893 0.1184 0.7581

2 Gray
images 10000 2000 epochs/13 h on

a RTX 3090 GPU 32/Fixed = 0.02 290.3340 18.3301 0.1770 0.7068

3 Gray
images 1000 2000 epochs/70 h on

a RTX 3090 GPU 32/Fixed = 0.02 285.6044 18.5301 0.1745 0.7203

4 Gray
images 1000 2000 epochs/13 h on

a RTX 3090 GPU

32/Scheduler every
200 epochs from

0.02
271.1421 18.3353 0.2599 0.5978

5 Gray
images 1000 2000 epochs/13 h on

a RTX 3090 GPU

32/Scheduler every
200 epochs from

0.02
610.1958 19.7455 0.1708 0.6960

Figure 12. The best result of VPTR whole
model.

the training is very time and resource-consuming: the final
training of the VPTR transformer costs 150 h on 2 RTX
2080Ti GPUs and we can only choose batch size equal to
1 on one GPU. We cannot achieve large batch sizes as au-
thors without training resources. Another problem is the
VPTR model has 100 million parameters and the Clinical-
GAN model has 1 million parameters. With more parame-
ters, it is very hard and tricky to tune the hyper-parameters
for these two models. As a result, we still use the hyperpa-
rameters from the original baseline, although these hyperpa-
rameters are very close to the original dataset. In addition,
the GAN loss and contrastive loss also make the training
very unstable. With inappropriate scale of these two losses
will instead harm the training process. In the ablation stud-
ies, we find using original coefficients can lead to a very
small improvement in results. One thing that can be con-
firmed is using a designed transformer layer can outperform
the classical transformer layers.

5.4 Future Feasible Method: StyleGAN2

Absence of realism within the data significantly con-
strains the practicality and utility of the model. Thus, we
have experimented with generative methods to create syn-
thetic data endowed with authentic visual features. We

planned to employ non-longitudinal retinal images to create
a latent space, and subsequently use a generator to synthe-
size the next image given the input one.

Predicting Osteoarthritis (OA) Progression in Radio-
graphs via Unsupervised Representation Learning [30] is
an unsupervised learning approach to predict the future de-
velopment of Osteoarthritis based on radiographs. Their
approach consists in generate future synthetic images and
then infer OA progression risk on them. They employ
StlyeGAN2 [34] to learn representations of radiographs.
Then, in order to find the vector that best matches the im-
age they invert the StyleGAN generator.[30] Finally, by in-
corporating radiograph’s time tamps, a latent vector field,
G−1(basline) → G−1(followup), is constructed.

Our StyleGAN representation effectively captures struc-
tural and shape variations regarding the disease in our syn-
thetic dataset. However, a notable issue is inconsistent color
representation within the disease area. While the model
captures the spatial characteristics of the anomalies, it oc-
casionally generates diseases with mixed colors. This in-
consistency in color representation is an aspect that needs
to be addressed.

6 Outlook

Our research was conducted using synthetic datasets,
which, while informative, may not fully capture the com-
plexities of real retinal disease progression. In the future,
obtaining access to a retinal longitudinal dataset or creating
a more realistic synthetic dataset through generative models
could enhance the relevance and practicality of our research.

The medical community is still unclear about how the
AMD disease progresses. Especially since it converges to
either wet or dry AMD at a later stage. It is particularly
interesting for physicians to identify at an early stage to



which class it will converge. Machine learning models ca-
pable of generalizing retinal disease progression have the
potential to make significant contributions to this area of re-
search. Physicians and researchers could in fact leverage
these models to gain deeper insights into the temporal evo-
lution of retinal diseases.

Furthermore, integrating demographic data, medical his-
tory, genetic markers, and other patient-specific information
into our models can provide a more comprehensive view of
disease progression, enabling personalized predictions and
treatment recommendations. Especially since it is possible
for different disease trajectories to be grouped according to
specific patient information.

As previously mentioned, some challenges commonly
found in longitudinal medical datasets are high dimension-
ality, and data heterogeneity. Addressing these challenges
will expand the applicability of our models in real-world
medical scenarios.
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A The baseline architectures

A.1 SimVP

Figure 13. SimVP[18] model architecture.

A.2 WALDO

Figure 14. WALDO[27] model architecture.

A.3 LMC

Figure 15. LMC[28] model architecture.Red:
long-term motion context recall from exter-
nal memory (LMC-Memory). Pink : LSTM
predicts future frames considering recalled
long-term motion context

A.4 VPTR

Figure 16. VPTR[17] model architecture.



A.5 ClinicalGAN

Figure 17. ClinicalGAN[19] model architec-
ture.

A.6 StyleGAN2

Figure 18. StyleGAN2[30] model architecture.

A.7 SADM

Figure 19. SADM[31] model architecture.

A.8 RVD

Figure 20. RVD[32] model architecture. Red
arrow: ConvRNN predicts most likely next
frame. Blue arrow: ConvRNN predicts con-
text vector for denoision diffusion model

B Intuitive Baseline Results

B.1 ClinicalGAN Autoencoder

Figure 21. Reusult from ClinicalGAN[19] Au-
toencoder.

B.2 ClinicalGAN Transformer

Figure 22. Reusult from ClinicalGAN[19]
Transformer. Results are still not optimal.



B.3 VPTR Autoencoder

Figure 23. Reusult from VPTR[17] Autoen-
coder.

C Ablation Studies Tables

Note here the tables are too large to show, so the tables
are in the next page.



Table 5. Ablation studies within VPTR[17] Autoencoder model using synthetic dataset 1.

Item Input Patients
Number

Epochs/Training
Time

Batch
Size/Learning

Rate

Training
with/out
GAN

MSE↓ PSNR↑ LPSIS↓ SSIM↑

1 Colored
images 1000

100 epochs with
pretrain/2.5 h on a
RTX 2080Ti GPU

5/Fixed =
2e-4 With Results too bad

2 Gray
images 1000

100 epochs with
pretrain/2.5 h on a
RTX 2080Ti GPU

5/Fixed =
2e-4 With 2106.635 8.951 0.214 0.482

3 Gray
images 1000

100 epochs with
pretrain/2.5 h on a
RTX 2080Ti GPU

5/Fixed =
2e-4 With 2133.331 8.897 0.214 0.478

4 Gray
images 10000

100 epochs with
pretrain/8 h on a

RTX 2080Ti GPU

5/Fixed =
2e-4 Without 2121.335 8.917 0.217 0.473

Table 6. Ablation studies within ClinicalGAN[19] Autoencoder model using synthetic dataset 1.

Item Input Patients
Number

Epochs/Training
Time

Batch
Size/Learning

Rate
Bottleneck MSE↓ PSNR↑ LPSIS↓ SSIM↑

1 Colored
images 1000

150 epochs without
pretrain/2.5 h on a
RTX 2080Ti GPU

5/Fixed =
2e-4

Average
Pool-
ing

Results too bad

2 Gray
images 1000

150 epochs without
pretrain/2.5 h on a
RTX 2080Ti GPU

5/Fixed =
2e-4

Average
Pool-
ing

Results too bad

3 Gray
images 10000

150 epochs without
pretrain/74 h on a
RTX 2080Ti GPU

5/Fixed =
2e-4

Average
Pool-
ing

2135.042 8.891 0.238 0.432

4 Gray
images 10000

150 epochs without
pretrain/19 h on a
RTX 2080Ti GPU

5/Fixed =
2e-4

Linear
Layer 2120.449 8.919 0.219 0.444



Table 7. Ablation studies within VPTR[17] Transformer model using synthetic dataset 1.

Item Input Patients
Number

Epochs/Training
Time

Batch
Size/Learning

Rate

Training
with/out
GAN

MSE↓ PSNR↑ LPSIS↓ SSIM↑

1 Colored
images 1000

150 epochs without
pretrain/13 h on a
RTX 2080Ti GPU

1/Fixed =
1e-4 With Results too bad

2 Gray
images 1000

150 epochs without
pretrain/13 h on a
RTX 2080Ti GPU

1/Fixed =
1e-4 With 1771.806 9.94 0.398 0237

3 Gray
images 1000

150 epochs without
pretrain/13 h on a
RTX 2080Ti GPU

1/Fixed =
1e-4 Without 1636.922 10.038 0.411 0.185

4 Gray
images 1000

150 epochs without
pretrain/8 h on two
RTX 2080Ti GPUs

2/Fixed =
2e-4 Without 1621.234 10.065 0.411 0.185

5 Gray
images 10000

150 epochs without
pretrain/140 h on a
RTX 2080Ti GPU

2/Fixed =
2e-4 Without 424.263 15.975 0.079 0.452

Table 8. Ablation studies within ClinicalGAN[19] Transformer model using synthetic dataset 1.

Item Input Patients
Number

Epochs/Training
Time

Batch
Size/Learning

Rate

Training
with/out
GAN

MSE↓ PSNR↑ LPSIS↓ SSIM↑

1 Colored
images 1000

150 epochs without
pretrain/7.5 h on a
RTX 2080Ti GPU

10/Fixed =
1e-4 With Results too bad

2 Gray
images 1000

150 epochs without
pretrain/7.5 h on a
RTX 2080Ti GPU

10/Fixed =
1e-4 With Results too bad

3 Gray
images 1000

150 epochs without
pretrain/7 h on two
RTX 2080Ti GPUs

10/Fixed =
1e-4 Without Results too bad

4 Gray
images 10000

150 epochs without
pretrain/25 h on two
RTX 2080Ti GPUs

10/Fixed =
2e-4 Without 2367.657 8.465 0.323 0.331

5 Gray
images 10000

60 epochs without
pretrain/10 h on a
RTX 2080Ti GPU

10/Fixed =
2e-4 Without 2689.788 7.897 0.312 0.500

6 Gray
images 10000

60 epochs without
pretrain/11 h on a
RTX 2080Ti GPU

10/Fixed =
2e-4 With 2648.101 7.953 0.596 0.305
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