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Abstract

Pixel2mesh is an end-to-end deep learning architecture
that generates 3D triangular meshes from single-color im-
ages. The majority of previous works represent 3D shapes
in volumes or point clouds, while the Pixel2Mesh net-
work represents 3D shapes in meshes, which are essentially
well graph suited for graph-based convolutional neural net-
works. Besides, this network has considerable potential to
be applied in specific domains. Our group is committed to
adapting pixel2mesh in the field of face generation and im-
proving its performance through a series of optimizations.
Codes can be found on the GitHub1.

1. Introduction

3D reconstruction is an important research content in the
field of computer vision, there are also plenty of applica-
tions in industry. Among those 3D reconstruction mod-
els, 3D face reconstruction has always been a heated di-
rection. High-quality reconstruction of 3D faces is of great
significance in the fields of face recognition, game enter-
tainment, medical treatment, etc. Therefore, we hope to
explore the face reconstruction model based on the tradi-
tional pixel2mesh network in this project. Our contribution
is summarized in:

1) Focus on face reconstruction instead of general object
reconstruction.

2) Improve the baseline model.
3) Ablation study within our model and compare related

criteria with original P2M.

2. Related Works

2.1. Learning-Based 3D Shape Reconstruction

After years of development, there are many mature mod-
els for 3D reconstruction task, among which Scan2mesh [4]
converts unstructured and possibly incomplete range scans
into structured 3D mesh representations. Another classic
baseline for the 3D reconstruction task is Pixel2mesh [14],

1https://github.com/ML3Dproject/Pixel2Mesh original-pytorch

it extracts features from a single 2D RGB image and gener-
ates the corresponding 3D mesh.

2.2. 3D Face Reconstruction

Blanz and Vetter [1] came up with the first significant
contribution, 3D Morphable Face, which marked the evo-
lution of facial reconstruction. Recent methods based on
neural networks have shown their effectiveness in produc-
ing reconstructions rich in detail [5]. We think improving
P2M model to face field is also a feasible solution.

3. Methods

3.1. Network Architecture

Our network includes three main parts: a pre-processing
network, a 2D face feature extracting network, and a 3D
deformation network. The whole network structure can be
found in Figure 1.

3.1.1 Pre-processing Network

Our main consideration is to help the 2D network better ex-
tract useful features from the not clean-background faces
and reduce the useless computation complexity. Addition-
ally, some researchers have done experiments showing the
classical P2M fails to reconstruct the furniture from noisy-
background images, which supports our pre-processing net-
work to detect and crop the input faces [10].

We have considered two different schemes. We first con-
sider base on the Mask Scoring R-CNN [7], which uses
Resnet101 and FPN as the RPN network with RolAilgn to
help us find the precise location of faces [6,10]. Although it
can extract features for the 3D network and combine the first
two networks, our Pixel2Mesh baseline is complex enough
that no more complexity can be added.

With the help of the face recognition area is a very active
field, we can use some very mature face-detection networks.
Finally, the pre-processing network contains an MTCNN
face detection network [16] to quickly detect the face re-
gions and uses the information from bounding boxes to crop
the local face region. We can see an example in the upper
left corner of Figure 1.

https://github.com/ML3Dproject/Pixel2Mesh_original-pytorch


Figure 1. Overall structure of the model: The three main networks and some detailed information are marked separately. ”c” means the
number of output channels, ”s” means the size of the stride, ”p” means the size of the padding. [13, 14]

Note that we expand the size of the box by a factor of
1.1 so that it can better frame the entire face. Besides, for
the faces that cannot be detected by MTCNN, we do aver-
age cropping on the original image using information from
detected images. And for two faces in one image, we use
the detection likelihood to crop the max likelihood face.

3.1.2 2D Face Feature Extracting Network

After the above analysis, we replace the original VGG-16
2D backbone with the VGGFace2 backbone [2]. It is a
Resnet50 backbone that firstly pre-trained on MS1M and
then fine-tuned on the VGGFace2 dataset. The original task
for the VGGFace2 network is to classify 8631 faces and
match the corresponding names. It will be more special-
ized to extract features from the crop faces images than the
general VGG-16 backbone. Figure 1 clearly shows the 2D
network and fusion ways.

3.1.3 3D Deformation Network

The overall structure is similar to the classical Pixel2Mesh
backbone. We follow the basic mesh deformation and graph
unpooling structure [2]. But we change the original el-
lipsoid into a semi-sphere as the initial deformation mesh,
which has 141 vertices and is created using Blender [8].
Because the 3D point cloud ground truths only contain the
front face surface and we can reduce the computation com-
plexity by using fewer vertices in initial mesh [11].

In the mesh deformation block, we still use perceptual
feature pooling to combine the 2D and 3D information [14].
But the new dataset uses parallel projection, not orthog-
onal projections. So we change the corresponding fusion

Figure 2. Original Graph Unpooling(left), Adaptive Unpool-
ing(right): The original way to add new vertices is at the center
of each edge. Improved Adaptive Unpooling can let the model
learn the position of interpolated vertices. The gray nodes and
blue nodes are both two possible positions.

method. After fusion and concatenation with the initial co-
ordinate of 3 dimensions, the 963-dimension feature is fed
into the G-ResNet Block and outputs the 3D coordinates of
the new vertex. The detailed information can be found in
Figure 1.

After each deformation block, there is a graph unpooling
block to add more vertices in the initial mesh [14]. We let
the locations of new points in edges be learnable parame-
ters. Figure 2 compares the original unpooling method and
our adaptive unpooling. Instead of increasing uniformly
everywhere, we can have more points in the face details
where more points are needed, and sparser points where
more points are not needed.

Due to faces having more details and a more complex
topology structure, we decide to add one more deformation
block and unpooling block so that the mesh can be fully
deformed to capture the detail of faces.



Figure 3. Uniform Sampling(left), Weighted Sampling(right):
We can see that more points are clustered in important locations.
So these positions are more specific when computing the losses.

3.2. Loss Functions

We follow the four main loss functions used in [14]. Us-
ing chamfer loss and normal loss to control the location of
vertices and quality of the mesh. And the Laplacian regu-
larization and edge length regularization are responsible for
controlling the deformation process [14]. The overall loss
is a weighted sum of losses:

lall = lC + λ1ln + λ2llap + λ3lmov + λ4lloc

with λ1 = 1.6e − 4, λ2 = 0.5, λ3 = 0.033, λ4 = 0.1.
And for chamfer loss, we give [0.5,1.,1.,1.] for four times
deformations.

To help the model capture the detailed feature around
eyes, noses, and mouths. We design two ways: The first one
is that we can let the points around these areas have larger
weight when computing loss [15]. But it is difficult for us
to handle which points are near these areas when comput-
ing the loss and the chamfer loss is the external library, we
cannot easily modify the source code.

As a result, we choose the second way to do weighted
sampling in the 3D point cloud ground truth as a pre-
processing step. Using the 68 pt3d landmarks from the
dataset [17], we first query different distances around the
landmarks and give each distance a weight to show its im-
portance. In the data loader, we randomly sample differ-
ent numbers of points in different regions. Also notes the
query distances and sample numbers are also hyperparame-
ters. We will discuss these in detail in Chapter 4.4.2. Dur-
ing computing the loss, we can push our vertex to deform
toward these sampled points and control the vertex to be
denser in key regions.

4. Experiments
In this section, some experimental results will be in-

troduced and discussed. Firstly we trained our model on
6×RTX 2080 Ti GPUs multiple times for different config-
urations to figure out the effects of different model compo-

Figure 4. Top: input image and corresponding point cloud; bot-
tom: four-time mesh deformation, which shows a coarse to fine
process

nents or parameters. Secondly we compared our proposed
model with the baseline model.

4.1. Dataset

AFLW2000-3D dataset [17] is a very famous face
dataset and is used for all our training. We also have pre-
pared a much larger dataset 300W-LP [17], which contains
more than 40,000 images, but due to time and device limits,
we cannot do experiments on the larger one. The original
AFLW2000-3D dataset contains 2000 3×450×450 RGB im-
ages of human faces in different angles, backgrounds, and
lighting conditions. Some images contain multiple faces
and the quality of the images are poor. We use BFM(Basel
Face Model) [12] to generate the 3D point cloud ground
truth, including vertices coordinates and normal vectors.

4.2. Evaluation

Chamfer Distance and F-score are used to measure the
quality of the 3D shape reconstruction [10]. Lower is better
for CD, and higher is better for F-score. Normalized Mean
Error(NME) [9] is a very common criterion in face recon-
struction field, while the normalized factor in NME is not
unified for the different datasets, so the value of NME and
other papers are not comparable. We finally abandon this
criterion.

4.3. Results of Our Method

We use the standard split for AFLW2000 dataset [17],
where 1600 instances are for training, 200 instances for val-
idation, and 200 for testing. We use our improved model
and set the batch size to 1 and the epoch to 80. We load part
of the checkpoint of the original P2M to the 3D deformation
network. The learning rate is initialized as 1e-4 and decays
with factor 0.3 at epoch (25, 40, 60).

During training, our network takes the 2D images as in-
put and corresponding point clouds as ground truth. During
inference, our network takes the 2D images as input and
predicts corresponding 3D meshes.

Figure 4 shows an example of the ”coarse to fine”
deformation process. We present the qualitative results



Figure 5. Left:input images; middle: corresponding point clouds;
right: predicted meshes.

of our method in Figure 5, which show plausible mesh
predictions of our methods, taking human face images from
different angles as input.

Table 1 shows quantitative results on AFLW2000-3D,
compared with the claimed performance of the original
P2M model on the ShapeNet [3]. The F1 score of our
method achieves comparable results compared with the
original Pixel2Mesh. Note that in the AFLW2000 dataset,
the number of points for each ground truth point cloud is
around 60,000 and our network finally predicts 7008 ver-
tices for each image input, while the original Pixel2Mesh
paper predicts 2,468 points with around 10000 points as
ground truth. For our model, when we compute the chamfer
distance between predicted vertice coordinates and ground
truth point clouds, for each point in both settings, it is more
likely to find a better matching point with a lower dis-
tance, that’s why the chamfer distance results show differ-
ence while the F1 scores are comparable.

Methods Dataset cd F1τ F12τ

original ShapeNet 0.482 65.22 78.80

ours AFLW2000 0.039 57.28 77.54

Table 1. Different number of points in three regions.

4.4. Ablation Study

4.4.1 Experiments on Adaptive Unpooling

We add the Adaptive Unpooling(AU), introduced in sec-
tion 3.1.3, to the baseline model to overfit a small part of the

data (10 samples). The result is shown in Table 2, and the
epoch by 10%, which proves that AU speeds up the model
convergence. One possible explanation is that AU learns to
move the vertices to correct places before mesh deformation
takes effect. In larger datasets or more complex models, AU
may have a greater impact.

Method Without Adaptive Unpooling Adaptive Unpooling

Epochs 5000 4500

Table 2. Results of epochs to achieve same evaluation criterion.

4.4.2 Experiments on weighted sampling

As mentioned in section 3.2, the query distances and
weights are shown in the follows: (The distance unit is mm.)

Sample =


weight = 2 x < 10

weight = 1 10 < x <= 17

weight = 0 x > 17

To verify the impact of the weighted sampling on train-
ing, we adopt three point-sampling methods in different
weighted regions shown in Table 3, while keeping other
model structures unchanged. Comparing the first two con-
figurations, the quality of the reconstructed mesh and the
evaluation performances are almost the same, which means
the total sampling points have little impact on model train-
ing. For configurations 2 and 3, the reconstructed mesh
has relatively much denser points around key regions, for
example, the nose and eyes. However, too many vertices
around the key regions will also lead to bad reconstruction
performance. After experiments, the number of points in
the above 3 regions is [11000,4000,3000].

Configuration
Face Boundaries

(weight 0)
Sub-priority Area

(weight 1)
Key Region
(weight 2) Total Number

1 11000 4000 3000 18000

2 5500 2000 1500 9000

3 2000 3000 4000 9000

Table 3. Different number of points in three regions.

4.4.3 Experiments on 2D pretrained model

We refined our model based on different 2D feature ex-
tractors: Resnet50 [13] and VGGFace2 pre-trained models.
The information about VGGFace2 pre-trained models can
be found in Chapter 3.1.2. The experiment shows that the
model using VGGFace2 is slightly better than the model us-
ing ResNet50, and there is no essential difference overall.



5. Conclusion

In conclusion, our project ports the Pixel2Mesh to 3D
face reconstruction field. We improve the baseline model
structure and our methods can predict plausible human
face meshes and achieve comparable results to the original
Pixel2Mesh method used on ShapeNet. It shows that the
modified Pixel2Mesh model is competent for more special-
ized object reconstruction.

Our method shares the same limitation as many of other
baseline models: does not produce fine-scale details. In fu-
ture work we can train the model in a larger dataset 300W-
LP [17] to get a better generalization ability and improve the
information extraction ability of 2D network using some 2D
reconstruction methods.
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