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Abstract

With the development of increasingly photorealistic diffusion models, models trained in part
or fully on synthetic data achieve progressively better results. However, diffusion models
still routinely generate images that would not exist in reality, such as a cat floating above the
ground or with unrealistic texture artifacts. We consider these types of images infeasible.
Intuitively, training with infeasible images should be detrimental to a model’s ability to
generalize to real data; hence, infeasible images are typically treated as out-of-distribution
(OOD) and removed from the training set whenever possible via filtering techniques. But
does feasibility really matter? In this paper, we investigate the necessity of feasibility when
generating synthetic training data for classifiers by using an LLM to define per-class in-
distribution (ID) and OOD attributes realting to the three target categories: background, color,
and texture. We introduce a minimal-change generation pipeline, VariReal, to create feasible
and infeasible comparison pairs from real images. In this way, we isolate the target attribute
from other information in the synthetic data. We show that feasibility of the synthetic data
does not majorly affect performance on several fine-grained classification datasets when
LoRA fine-tuning CLIP on synthetic data, showing less than 1 percentage point difference in
top-1 accuracy between feasible and infeasible datasets across almost all test settings when
evaluated on Oxford Pets, FGVC Aircraft, and Stanford Cars. More importantly, we show that
mixing feasible and infeasible data within synthetic training datasets does not significantly
impact performance when compared with models trained on only feasibles or infeasible
synthetic images.
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Kurzfassung

In Zeiten großskaliger vortrainierter Modelle erfordert der Mangel an hochwertigen Daten
die Generierung von Datensätzen, die reale Verteilungen widerspiegeln. Generative Mod-
elle, insbesondere Diffusionsmethoden wie Stable Diffusion, bieten eine Lösung, indem sie
synthetische Daten erzeugen. Aufgrund von Machbarkeitsproblemen enthalten synthetische
Daten jedoch häufig Out-of-Distribution (Out-of-Distribution (OOD)) Bilder, die Elemente
einführen, die von plausiblen realen Szenarien abweichen. Diese Arbeit untersucht den
Einfluss von machbarkeitsbezogenen OOD-Daten auf nachgelagerte Aufgaben, insbesondere
Klassifizierungsaufgaben. Wir schlagen eine Pipeline zur Minimal-Änderung-Synthetischen-
Daten-Generierung (Minimal-Change Synthetic Data Generation (MCSDG)) vor, die kon-
trollierte Attributvariationen in synthetischen Bildern wie Hintergrund, Farbe oder Textur
gewährleistet. Mit diesem Ansatz entwickeln wir machbare In Distribution (ID)- und nicht
machbare OOD-Datenpaare und erforschen die Auswirkungen machbarer Daten auf das
Modelltraining. Unsere Experimente, die mit einem feinabgestimmten CLIP-Klassifikator
unter Verwendung von LoRA-Modulen durchgeführt wurden, zeigen, dass Machbarkeit die
Klassifikationsleistung nicht beeinflusst. Im Gegensatz dazu wirken sich Änderungen am
Hauptobjekt oder am Hintergrund bei Klassifizierungsaufgaben erheblich auf die Leistung
aus. Durch eine umfassende Analyse leisten wir einen Beitrag zu neuen Erkenntnissen über
die Rolle der Machbarkeit und die strategische Nutzung von OOD-Daten zur Erhöhung der
Modellrobustheit bei nachgelagerten Aufgaben.
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1. Introduction

1.1. Background

In recent years, large-scale pre-trained models [1, 2, 3, 4, 5, 6] have significantly surpassed
traditional deep learning and machine learning approaches in various tasks. However, as the
scale of training data grows, access to high-quality data has become increasingly limited [7],
posing challenges to further improving these large models’ capabilities. With the popularity
of generative models [8, 9] like Stable Diffusion [2], researchers are increasingly leveraging
these models to generate high-fidelity synthetic data that closely resembles real-world data,
offering a solution to data scarcity [surveydpm, surveyhealth].

1.2. Motivation

Prior studies have explored synthetic data generation under a limited few-shot real image set-
ting [10, 11, 12, 13, 14, 15, 16, 17]. These works aim to create synthetic data that approximates
the real-world data distribution while avoiding overfitting to the limited available examples.
Some studies [11, 13] suggest that synthetic data can offer benefits beyond those of real data.
However, the inherent randomness in the image generation process of diffusion process [1, 2]
can introduce domain shifts [13] or implausible scenarios like “a dog floating in the sky” [12]
that do not reflect realistic patterns, which might intuitively be counterproductive.

Interestingly, some studies [18, 19, 20] suggest that OOD data can positively impact
downstream tasks when mixed with real data in certain proportions. A typical example
is data augmentation [19], where some augment methods introduce OOD data relative
to the original distribution yet still provide benefits. While the advantages of OOD data
generally diminish as divergence from the original distribution increases [18], these findings
demonstrate OOD data is not always harmful. Conversely, incorporating feasible content
similar to the training domain is naturally beneficial. The ALIA method [14] augments
datasets with “feasible backgrounds”, demonstrating performance improvement with ID data.
This raises a key question: does training data feasibility affect downstream tasks, and could
control the incorporation of such OOD data improve performance?

1.3. Our Work

This work introduces an automatic minimal-change generation pipeline, MCSDG, based on
Stable Diffusion [2]. MCSDG allows us to control object feasibility to create targeted synthetic
comparison pairs, as the example shows in Figure ??. We evaluate feasibility effectiveness
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1. Introduction

by employing the CLIP [21] classifier and fine-tuning it on the synthetic dataset generated
using MCSDG. Precisely, we manipulate three key object attributes—background, color,
and texture—to examine classifier performance under two conditions: (1) fine-tuning with
synthetic data only and (2) mixed training with real and synthetic data. For each attribute,
we consider feasible data as ID and infeasible data as OOD. For example, a black "Bombay"
dog is a plausible real-world instance (ID), while a "Bombay" dog with white fur is infeasible
and thus categorized as OOD.

Our experiments on three fine-grained datasets reveal several key insights. We also
show that modifications similar to ALIA [14] do not necessarily need to select only feasible
scenarios. Regardless of feasibility, changing the background can enhance the classifier’s focus
on the primary task, while foreground modifications for color and texture often challenge
the classifier’s learning process. We also demonstrate that mixing synthetic data can yield
performance benefits when paired with real data.

In summary, our contributions are as follows:

• We propose MCSDG, an automated generation pipeline for producing minimal-change
synthetic data by altering only one attribute at a time. This approach can be applied
out-of-the-box to any object-centric classification dataset without additional fine-tuning.

• We generate and provide feasible (ID) and infeasible (OOD) dataset comparison pairs
based on real images, covering three controlled attributes.

• To explore feasible and OOD data roles, we fine-tune CLIP with LoRA modules. Ana-
lyzing classification scores, we offer new insights into the impact of feasibility and the
strategic use of OOD data for enhancing downstream task performance.

1.4. Thesis Overview

The thesis is organized into seven main sections. Section 2 introduces the fundamental
knowledge of Diffusion Models. Building on this foundation, Section 3 presents related
work, including current research on text-to-image models, few-shot image synthesis, OOD
data, and other relevant algorithms. In Section 4, we detail our methodology, followed by
experimental results in Section 5. Finally, Section 6 discusses future work, and the conclusions
are presented in Section 7.

2



2. Fundamental

2.1. Introduction

Generative modeling is a core challenge in machine learning, with numerous applications in
fields such as computer vision, audio synthesis, and natural language processing. Among
the wide variety of generative models, diffusion-based approaches have gained substantial
attention due to their theoretical foundation and high-quality results in image generation
tasks. We present one example in Figure 2.1. Diffusion models rely on the principle of
gradually adding noise to data and then learning how to reverse this process to recover the
original data distribution. The Latent Diffusion Model (LDM) [2] extends this framework by
applying diffusion in a compressed latent space rather than the original high-dimensional
pixel space, significantly improving the computational efficiency.

We will firstly introduce the Denoising Diffusion Probabilistic Models (DDPM) in section 2.2,
then Denoising Diffusion Implicit Models (DDIM) in 2.3, and finally Latent Diffusion Models
(LDM) 2.4.

Figure 2.1.: The comparison of generated images for CelebAHQ [22] dataset for VAE, GAN
and diffusion methods respectively. For VAE method, we need specialized method
so that we could generate human face images very well [23, 24]. GAN [24]
methods are not stable for training while DDPM [1] is a general process.

2.2. Denoising Diffusion Probabilistic Models

DDPM, proposed by Ho et al. [1], was one of the first diffusion models that demonstrated
the potential of noise-based generative processes. The model operates on two phases: a

3



2. Fundamental

forward diffusion process that gradually corrupts the data and a reverse denoising process
that attempts to recover the original data from noise.

2.2.1. Forward Diffusion Process

The forward diffusion process in DDPM is defined as a sequence of transformations that
gradually add Gaussian noise to the original data. Starting with a data point x0 ∼ q(x),
the forward process generates a series of noisy samples x1, x2, . . . , xT through the following
transition distribution:

q(xt|xt−1) = N (xt;
√

1 − βtxt−1, βt I), (2.1)

where βt ∈ (0, 1) is a small positive constant that controls the variance of the noise added
at each time step. As t → T, the sample xT approaches a pure Gaussian noise distribution,
such that:

q(xT|x0) = N (xT; 0, I). (2.2)

A notable property of this process is that it can be expressed in a closed form for any
arbitrary time step t, allowing us to directly sample xt from x0 as:

xt =
√

ᾱtx0 +
√

1 − ᾱtϵ, (2.3)

where ᾱt = ∏t
i=1(1 − βi) and ϵ ∼ N (0, I) represents the Gaussian noise. This closed-

form expression significantly simplifies training since it removes the need to compute every
intermediate step sequentially.

2.2.2. Reverse Denoising Process

The reverse process aims to gradually remove noise from a noisy sample xT to recover a
high-quality approximation of the original data x0. The reverse process is modeled by a
neural network, typically parameterized by θ, which predicts the noise at each time step t.
The reverse transition distribution is formulated as:

pθ(xt−1|xt) = N (xt−1; µθ(xt, t), Σθ(xt, t)), (2.4)

where µθ(xt, t) is the mean predicted by the neural network, and Σθ(xt, t) is the variance
(which is either fixed or learned). The model is trained by optimizing the following loss
function, which encourages the neural network to predict the noise added at each step:

Lsimple = Ex0,ϵ,t
[
∥ϵ − ϵθ(xt, t)∥2] . (2.5)

This formulation is known as a denoising score-matching loss, and it is designed to mini-
mize the difference between the actual noise ϵ and the noise predicted by the model ϵθ(xt, t).
Over time, the network learns to reverse the forward diffusion process by progressively
removing the noise, resulting in high-quality samples.

4



2. Fundamental

2.2.3. Methods for Predicting Noise

One of the key design choices in diffusion models is to predict the noise added at each time
step rather than the raw pixel values directly. The reasons for this are as following:

• 1. Simplicity of Modeling Noise: Predicting noise in Gaussian processes is often simpler
than directly predicting pixel values. This is because the distribution of noise in a
Gaussian process is well-characterized, whereas pixel values can be highly complex and
multimodal.

• 2. Stochasticity of Data Generation: Noise prediction aligns with the stochastic nature of
the generative process, making it easier to learn a smooth approximation of the reverse
process. The neural network essentially learns a denoising function real distribution
that removes structured noise from the data.

When we are training the diffusion model, we sample the time-step t and add corresponding
noise to the input images. Then we use a U-Net model to predict the added noise for the
specific time-step t.

The U-Net consists of an encoder, a bottleneck, and a decoder. The encoder progressively
downsamples the input, extracting high-level features, while the decoder upsamples the
feature map back to the original resolution. Skip connections between corresponding layers of
the encoder and decoder allow the network to retain high-resolution details, which is crucial
for accurate noise prediction in diffusion models.

In the context of diffusion models, the input to the U-Net is the noisy image (or latent
representation) at time step t, and the output is the predicted noise ϵθ(xt, t). The skip
connections help the network retain fine details from the input, improving the quality of the
generated samples.

2.3. Denoising Diffusion Implicit Models

DDIM [25] introduces a deterministic alternative to the sampling process in DDPM, achieving
a trade-off between sample quality and computational efficiency. While DDPM uses a
Markovian reverse process, where each step is stochastic, DDIM modifies the process to make
it deterministic.

2.3.1. Deterministic Reverse Process

In DDIM, the forward process remains the same as in DDPM. However, the reverse process
is modified to remove the stochasticity, allowing for deterministic sampling while retaining
high-quality results. The reverse process in DDIM is given by:

xt−1 =
√

ᾱt−1

(
xt −

√
1 − ᾱtϵθ(xt, t)√

ᾱt

)
+

√
1 − ᾱt−1ϵθ(xt, t). (2.6)

5



2. Fundamental

This formulation guarantees a consistent mapping from the noise space to the data space,
making DDIM particularly useful when faster sampling is required. The deterministic nature
of the process also enables fewer sampling steps, reducing the time required for generation.

2.3.2. Relation Between DDPM and DDIM

While DDIM and DDPM share a similar forward diffusion process, their key difference lies
in the reverse process. DDIM’s reverse process eliminates the randomness associated with
DDPM, but this also introduces a trade-off between flexibility and sampling speed. DDIM
typically requires fewer sampling steps (as low as 10-20 steps) compared to DDPM, which
may need hundreds of steps.

2.4. Latent Diffusion Models

Latent Diffusion Models (LDM) [2] build upon the principles of DDPM and DDIM by moving
the diffusion process from pixel space to a lower-dimensional latent space.

Figure 2.2.: The forward diffusion process are present in sub-figure a [1] and sub-figure b.
Sub-figure c [2] shows the stable diffusion prior injecting process from encoding
a input image, while sub-figure d [2] shows the inference process from a pure
noise.

2.4.1. Motivation for Latent Space Diffusion

Operating in pixel space poses significant challenges for diffusion models due to the high
dimensionality of images. For example, an image with a resolution of 1024 × 1024 contains
over a million pixels, making the forward and reverse processes computationally expensive.
So traditionally, most DM model operates images on a lower resolution. LDM addresses
this issue by first encoding the input images into a lower-dimensional latent space using a
pre-trained encoder such as a Variational Autoencoder (VAE).

6



2. Fundamental

Once in the latent space, the diffusion process can be applied more efficiently, as the
dimensionality is significantly reduced. After the reverse process is complete, the latent
representation is decoded back into pixel space using the VAE decoder, recovering the
original high-resolution image. The process is shown in Figure 2.2.

2.4.2. Latent Diffusion Process

Let E(x0) represent the encoder of the VAE that maps a high-dimensional image x0 into a
lower-dimensional latent space z0. The forward diffusion process in this latent space is similar
to the pixel-based diffusion process:

zt =
√

ᾱtz0 +
√

1 − ᾱtϵ, (2.7)

where zt is the noisy latent representation, and ϵ is the Gaussian noise added at each time
step t. The reverse process is modeled using a neural network, typically a U-Net architecture,
that predicts the noise added to the latent representation at each time step to minimize the
loss:

LLDM := EE(x),ϵ∼N (0,1),t

[
∥ϵ − ϵθ(zt, t)∥2

2

]
. (2.8)

Once the reverse process is complete, the latent representation z0 is decoded back into pixel
space using the decoder D(z0) of the VAE:

x0 = D(z0). (2.9)

2.4.3. Efficiency of Latent Diffusion

By moving the diffusion process to the latent space, LDM significantly reduces the compu-
tational burden. Since the latent space has a much lower dimensionality compared to pixel
space, both the forward and reverse processes become more efficient. This allows for faster
sampling and enables the generation of high-resolution images without the need for extensive
computational resources.

7



3. Related Work

3.1. Text-to-Image Diffusion Models

Figure 3.1.: The generated image examples from representative T2I diffusion models [26, 27,
28, 2].

3.1.1. DALL-E

DALL-E [26] is a text-to-image generation model. Its core approach involves converting text
features into image features, utilizing two main components: a diffusion-based Diffusion
Prior module and a diffusion-based Diffusion Decoder module. The Diffusion Prior uses a
CLIP text encoder to extract text features to iteratively update the randomly initialized image
embeddings.

The Decoder uses the image embeddings along with the text captions as inputs. The text
encoding and image embeddings guide the diffusion process in the Decoder to generate the
final image. DALL-E excels in complex visual generation tasks by integrating multimodal
training on text and image data. The generated images are shown as a) Figure 3.1.

8



3. Related Work

3.1.2. Imagen

Imagen [28] is a text-to-image generation model that combines the capabilities of large-scale
language models and diffusion models to generate high-resolution images. It uses a pre-
trained T5 model to extract features from the input text, enhancing the semantic understanding
of the text and making the generated images more aligned with the descriptions.

A Text-to-Image Diffusion Model then generates a 64 × 64 image from random noise based
on the text embedding. The generated image is upscaled to 256× 256 using a Super-Resolution
module, and then to 1024 × 1024 using another Super-Resolution module, both guided by
the text embedding. A new, efficient U-Net architecture is also introduced, providing higher
computational efficiency, better memory usage, and faster convergence.

The authors also demonstrated that extending the text encoder significantly impacts
performance more than extending the diffusion model itself. The generated images are shown
as b) Figure 3.1.

3.1.3. GLIDE

GLIDE [27] introduces a simple yet effective diffusion model for generating images condi-
tioned on text. Before GLIDE, Guided Diffusion [29] is to classify the generated image at
each step of the reverse process using a classification network, and then compute the gradient
based on the cross-entropy loss between the classification score and the target class. This
gradient is used to guide the next step of sampling.

Although Guided Diffusion does not require retraining the diffusion model, it incurs
additional computation costs since each reverse process requires at least one pass through
the network. Furthermore, the separate training of the guidance function and the diffusion
model makes it difficult to scale the model efficiently.

To address these limitations, Classifier-Free Guidance [30] was introduced. The diffusion
model is trained with both conditional and unconditional settings, and the outputs of these
paths are combined to control the details and diversity of the generated image. The noise
estimation in the generation process is defined as:

ϵ̂θ(xt|c) = ϵθ(xt) + w · (ϵθ(xt|c)− ϵθ(xt)), (3.1)

where ϵθ(xt|c) and ϵθ(xt) are the conditional and unconditional noise predictions, respectively,
and w is the guidance weight controlling the influence of the condition.

By adjusting w, an optimal balance can be achieved between enhancing the alignment with
the conditioning input (e.g., a text description) and preserving diversity.

GLIDE is based on Classifier-Free Guidance, uses a larger-scale diffusion model trained
on a large dataset. It replaces the previous class conditions with text descriptions, resulting
in higher-quality image generation and better control over the image details. The generated
images are shown as c) Figure 3.1.
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3.1.4. Stable Diffusion

In the text-to-image stable diffusion [2] (T2I) model, text conditioning is achieved by incorpo-
rating a text encoder, such as CLIP [21], to map the input text y into a latent representation.
This representation is then used to guide the diffusion process at each step. Specifically,
the text embedding zy is concatenated or injected into the intermediate layers of the U-Net
model using cross attention [31], which predicts the noise ϵθ for denoising. The conditional
probability pθ(xt−1|xt, zy) is optimized, where zy provides the semantic information from the
text that steers the model towards generating an image that matches the input prompt. The
model learns to associate the text embedding with corresponding image features, ensuring
that the generated image reflects the text description. The text input could be weighted by
modifying the attention weights of specific token [32], like using the library Compel [33]. The
generated images are shown as d) Figure 3.1.

Stable Diffusion XL

Stable Diffusion XL [34] is an enhanced version of Stable Diffusion, achieving higher-quality
image generation through a deeper architecture and larger training dataset. The improvements
include using a more complex UNet with additional parameters and employing a larger text-
conditioning encoder, specifically OpenCLIP ViT-bigG [35], as well as an extra text encoder,
CLIP ViT-L [21]. These additions enrich the conditioning process with complementary textual
features, producing more refined image outputs.

Stable Diffusion XL also introduces an additional diffusion model specialized in handling
high-quality, high-resolution data. The model is trained on a larger and more diverse image
dataset, which significantly improves its generalization capability and image quality. This
larger dataset allows Stable Diffusion XL to generate images with higher fidelity and more
realistic details.

3.1.5. Expanding the Generation Domain from Pretrained Models

To generate images in a new domain beyond the training data, various generation techniques
can be applied.

Textual Inversion

Textual Inversion [36] is a method for custom text-to-image generation by learning embeddings
for specific terms. When introducing a new concept to a pretrained model, a placeholder
token not present in the original training data is chosen, and a learnable embedding is
associated with it. You could check the Figure 3.2 a).The original weights of the SD model
are not modified; instead, the placeholder token’s embedding is replaced with the learned
embedding during inference. This approach requires only a few examples to introduce new
concepts.
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Figure 3.2.: The architecture illustration for Textual Inversion [36] and DreamBooth [37].

DreamBooth

DreamBooth [37] is a technique for personalized image generation, primarily used to fine-
tune large-scale diffusion models with a few images to generate images with personalized
characteristics. When attempting to learn new concepts using a small number of images
(> 3), directly training on the limited data can lead to language drift or overfitting. The
authors propose introducing a new token along with corresponding image examples and
fully fine-tuning the SD model. DreamBooth enables the generation of high-quality images
for specific objects while retaining the original generalization capabilities of the model.

To preserve the diversity of the original SD model’s output, an additional mean squared
error (MSE) loss is applied between the fine-tuned and original model outputs, maintaining
the diversity during the fine-tuning process.

The methods described above are commonly used to introduce new concepts into pretrained
SD models. There are also other similar techniques. For example, InterpretDiffusion [38]
introduces a trainable vector in the UNet bottleneck to achieve the desired modifications.
Another approach [39] removes the background from the main object in the new image and
encodes it using an image encoder, incorporating cross-attention with the text information.
However, this method requires fine-tuning the original SD model on new images. The method
is demonstrated in Figure 3.2.

ControlNet

ControlNet [40] provides more precise constraints for text-to-image generation processes.
The authors propose creating a trainable copy of a pretrained diffusion model while keeping
the original weights fixed. The trainable copy takes the conditioning information c as input,
with the input connected to the model using zero convolution to prevent altering the original
training weights. ControlNet supports controlling the image generation process using external
inputs, such as poses, depth maps, or other features, ensuring that the generated image meets
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the user’s requirements.
To enhance multi-level constraints, Uni-ControlNet [41] introduces a method to combine

different types of constraints, such as edge maps, depth maps, and segmentation maps, for
more comprehensive control.

Similar methods include:

• ILVR [42]: This approach modifies the DDPM sampling method to enable the generation
of new concept images without fine-tuning.

• Context Diffusion [43]: This model extends ControlNet by incorporating reference
images to influence not only the structure but also the style, color, and texture of
the generated images. The method adds the image features as a condition in the
cross-attention mechanism of the text condition, changing the key-value sources from
text-only features to a concatenation of image and text features. However, this model
requires the reference image to be similar to the ControlNet input image.

• ColorSD [44]: This technique uses an image or text reference for color style transfer,
allowing for style and color adjustments without fine-tuning, simply by adjusting the
text prompt.

• Paint by Example [45]: This approach performs inpainting on specified masked areas
using a reference image, retaining the main subject and injecting it into the SD model
via cross-attention.

Figure 3.3.: The illustration of ControlNet [40] and IP-Adaptor [46].

IP-Adapter

The IP-Adapter [46] is a model adapter designed for image generation that enhances the
generative capabilities of the original model without modifying its architecture. By intro-
ducing decoupled attention, features from a reference image can be added to the pretrained
model’s text attention, enabling additional conditioning based on the reference image. This
is illustrated in Figure 3.3. The underlying principle involves summing the results of two
cross-attention operations. It has parameter controls the scale of the adaptation; a higher scale
makes the output more closely resemble the reference image.
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3.2. Synthetic Data for Image Recognition

Figure 3.4.: The overview of Section 3.2.

Synthetic data has become a crucial resource in computer vision, particularly for creating
large-scale, high-quality labeled datasets to reduce the burden of manual annotation [13].
With the rise of large language models (LLMs) and the extensive use of internet-based data
for pre-training foundation models [7], the scarcity of available data has prompted growing
interest in generating high-quality synthetic data.

There are two primary methods for generating synthetic data: simulation-based rendering
pipelines and generative models. The first approach [47, 48] involves using 3D scenes
rendered by a physical graphics engine. While this method offers flexibility for manual or
semi-automated editing, it has several drawbacks:

• The rendered scenes require manual or semi-automatic design by individuals with
expertise in physical engines, and numerous factors must be considered to minimize
the domain gap between real-world and simulated environments.

• The model sources are often restricted, limiting the range of objects that can be used
to build synthetic scenes. Additionally, creating new models for real-world objects is
costly, especially for specific scenarios.

• Scaling the dataset’s size and diversity requires redesigning the source scenes, making
the process resource-intensive and inefficient for creating large datasets.

In contrast, using generative models to produce synthetic images is far more efficient. These
models can generate high-fidelity, photo-realistic images, with the potential to produce an
unlimited variety of outputs. Existing generative models, such as those based on Variational
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Autoencoders (VAEs) [8] and Generative Adversarial Networks (GANs) [9], have been widely
used. The generated synthetic images are widely used in tasks such as image recognition [11,
15, 14, 12], object detection [49], and semantic segmentation [17]. Since image recognition is
a foundational task in computer vision, the challenge of generating diverse, in-distribution
data to ideally solve this base task has become increasingly important. Recent works have
identified several key methods for addressing this challenge, which can be summarized as
follows:

3.2.1. Diversify In-domain Text Prompts

Vanilla Language Augmentation.

Synthetic data generated using only class labels with basic prompts often lacks the diversity
found in real-world scenes, sub-objects within one super class, and semantic visual details.
A basic prompt might be structured as "a photo of [CLS]," where "[CLS]" represents the
corresponding class name. The simplest approach to generating more diverse images involves
using a language model to enhance the basic prompts with the rich knowledge learned for
specific classes during pretraining. For example, IsSynth [13] employs the T5 model [50] to
increase linguistic diversity, enriching the range of generated images.The generated image
examples are shown in Figure 3.5. Similarly, SynthClip [16] uses a large language model (LLM)
as a text generator, focusing on prompt engineering to condition the model on particular
classes, leading to more varied text prompt for a given class. DiffMask [17] addresses the
monotony of generated images by incorporating K "[sub-class]" entries into basic prompts.
For example, instead of using the simple prompt "Photo of a bird," which covers a broad
class, they introduce sub-classes from sources like Wikipedia, resulting in prompts such as
"Photo of a [sub-class] bird," where [sub-class] is one of {Sub1, Sub2, ..., SubK}.

In cases where class names have multiple meanings (e.g., "Crane" as both a bird and a
machine), it can be difficult to predict which meaning a language model will generate without
manual checks. To address this ambiguity, [10] propose a method to generate ImageNet
domain synthetic images by first using a large language model (LLM) to generate K possible
interpretations for ambiguous class names. Then, using CLIP, they extract features from the
phrases and the original image, calculating their similarity to resolve the correct meaning.

However, augmenting text prompts can introduce noise, such as non-existent details
or unrelated classes, into the generated images. To mitigate this, filtering or resampling
methods[16] are often applied to ensure better alignment with the target real-world images.

Describe the Images by Caption Models

To generate more realistic and semantically rich details, caption models can be used to
describe real images, helping to ensure that the generated content aligns with real-world data
distributions. This method takes into account the kinds of content found in actual images,
allowing the text prompts to better reflect real-world scenes. For instance, Disef [15] uses
an Image Captioning Model to augment text input with detailed descriptions. Similarly,
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DiffMask [17] uses the ClipRetrieval [51] model to retrieve the top K real captions from an
image-caption dataset, ensuring that the text prompts are as realistic and diverse as possible.

Pattern Generation by Certain Aspects

The augmentation process involving language or caption models can be seen as a distillation
of the knowledge contained within these models. However, beyond relying solely on the
capabilities of these models, we can also hand-craft key aspects to better guide the generation
of synthetic images.

For instance, FakeIt [14] addresses issues related to semantics and domain by using hy-
pernyms and definitions from the WordNet graph. Hypernyms represent the parent class
names of a given class in the graph, while definitions provide sentence-length descriptions
of the semantics of each synset. Their experiments show that incorporating hypernyms and
definitions improves classifier accuracy, suggesting that these techniques can help generate
more realistic and precise synthetic images. However, despite the more expressive prompts,
the generated images still lack diversity in pose and viewpoint. To tackle this, they employ
classifier-free diffusion guidance and diversify the backgrounds using class-agnostic scenes.
Although this approach may introduce domain shifts or unrealistic background-object combi-
nations, the authors argue that such diversity, even if inconsistent with the data distribution,
can serve as beneficial data augmentation.

DDFT [10] introduces the concepts of Contextualized Diversification (CD) and Stylized
Diversification (SD) to enhance how LLMs describe real images. CD focuses on maximizing
diversity in the context by combining elements like foreground objects, backgrounds, lighting
conditions, and camera angles. SD, on the other hand, applies 60 different art styles to
generate images. Using text prompts enriched with CD and SD, the model generates images
with a broader range of visual diversity. Additionally, DomianDiverse [14] highlights the
importance of domains such as location, weather, and time of day, which are unrelated to
classification but add valuable context. Due to the limitations of using a caption model
alone—which may not fully capture the nuances of input images—they further employ an
LLM to summarize and filter out general elements, such as scenes, actions, camera poses, and
zoom levels, that are unrelated to the primary class.

As discussed above, even with various techniques aimed at maximizing the realism and
diversity of generated images, automatic generation pipelines can still produce unsuitable
content or fail to capture all details from the text input. To address these issues, CLIP
Filtering [15] and Real Filtering (when few-shot examples are available) [13] are used. The
core idea is to leverage the zero-shot feature extraction capabilities of CLIP to obtain both
image and text embeddings. The similarity between these embeddings is then compared,
with high similarity indicating that the generated images closely match the text prompt or
real images.
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3.2.2. Incorporating In-Domain Knowledge from Real Images

Latent Encoding from Real Images

To encode more comprehensive information from real images beyond textual descriptions,
Disef [15] proposes a method where noise is introduced into the image embeddings starting
from a specific step. This process utilizes Stochastic Diffusion (SD) to disrupt low-level
details while preserving high-level semantic features. Moreover, the approach uses the final
caption from one image as a condition for generating the next image, ensuring diversity in
the output. The primary goal is to generate images that belong to the same semantic category,
maintaining similar visual patterns such as perspective or distinguishing characteristics. The
generated image examples are shown in Figure 3.5.

Training with Real Images

The generation techniques discussed above focus on various aspects of image synthesis. We
can retrain or fine-tune the Stable Diffusion model to capture the distributional information
from real few-shot images more effectively. For example, DetectionSynth [49] aims to generate
a synthetic detection dataset, which is more complex than a standard recognition dataset due
to the need for additional bounding-box annotations. In this case, the images must contain
multiple objects, and backgrounds should be diversified to vary detection difficulty. They
argue that SD models, when guided by corresponding text prompts, often generate simplistic
backgrounds with one or two objects, leading to reduced robustness in the detection model.
To address this, they fine-tune the Stable Diffusion model using real images with SD objective
loss, aiming to extend the dataset rather than focusing on few-shot learning.
Similarly, DataDream [11] utilizes the LoRA method to fine-tune the Stable Diffusion model
using few-shot images and SD objective loss. Their work compares the impact of fine-
tuning with few-shot images from each class individually versus using images across classes
collectively. They conclude that fine-tuning with data from across classes helps the model
learn the general distribution of the entire dataset more effectively. In this fine-tuning context,
complex text prompts are not necessary—simple prompts like "a photo of [CLS]" are sufficient.

3.2.3. Validity Argument In the Image Recognition Task

The methods discussed above offer various approaches to generate high-fidelity and photore-
alistic synthetic data. IsSynth [13] conducts an in-depth analysis of the utility of synthetic
data, reaching a counterintuitive conclusion. In zero-shot settings, synthetic data proves to be
less effective for training compared to real data—50k synthetic images are equivalent to only
9k real images in terms of effectiveness. When training a CLIP image encoder from scratch,
the performance of the model is significantly worse compared to the original pre-trained
model. The authors attribute this performance gap to the domain differences between real
and synthetic images. They further examine the effect of domain shifts in real images, such
as switching tasks, and observe similar performance degradation. Moreover, increasing
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Figure 3.5.: Our generate synthetic images using Disef [15] and IsSynth [13] methods on DTD
dataset [52]. We could see the Disef method will generate some non-realistic
images given few shots.

the volume of synthetic images does not result in continued performance improvement, as
performance saturation is observed.

Figure 3.6.: Initial experiments using the Disef [15] method as an attribute editing technique
on Tiny-ImageNet [53] demonstrated that Disef can adjust the "noise step" pa-
rameter in SD to control the level of noise added to the real latent representation.
The results show that a larger "noise step" leads to greater divergence in the
output. However, since the SD model has biases toward certain colors for specific
attributes, it is challenging to directly alter colors accurately.
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Another experiment shows that incorporating few-shot real images helps align the output
more closely with the real data distribution. However, the more real images included, the less
beneficial synthetic images become. On a positive note, synthetic data can be comparable to
real images for model pretraining.

A key takeaway from this analysis is that the pretraining process used by models like SD [2]
or GLIDE [27] often introduces biases, resulting in domain gaps when applied to different
datasets. We could also experiment this in Figure 3.6. This means that poorer results on
certain datasets may be attributed to the pretraining process not adequately learning the
distribution of that specific data.

This work uses only basic text prompt augmentations, but concurrent research [16, 11, 12,
15, 10, 14] shows that synthetic data can have a positive impact, especially when combined
with few-shot real images. In their experiments, retrained or fine-tuned classifier performance
can surpasses models trained solely on real data, offering a valuable solution when training
data is limited.

3.3. Value of Out-of-Distribution Data

Figure 3.7.: The overview of Section 3.3.

3.3.1. OOD Definition

Out-of-distribution (OOD) data is defined with the in-distribution (ID) data range, which
corresponds to a distribution shift. We first need to establish ID as the reference point for
discussing OOD data. Typically, the distribution on which a model is trained is referred to as
the source distribution, while the distribution of the data used during inference is called the
target distribution [54]. The core issue with OOD data arises from these two distributions’
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differences. Various factors contribute to this discrepancy. For example, real-world data is
dynamic, making it challenging to ensure that the training data remains aligned with the test
data distribution over time. Expanding the training dataset by adding samples from different
distributions can introduce further variability. Ensuring the newly incorporated training
data is aligned with original data is essential. This concept also underlies the motivation
to generate synthetic images with a distribution similar to the real dataset, as discussed in
Section 3.2.

OOD data can be broadly classified into two categories: semantic shifts and covariance
shifts [55]. A semantic shift occurs when the label distribution differs between the training
and test datasets. In this scenario, the model encounters test labels not present during
training, leading to incorrect predictions where the model assigns an unseen sample to a
known class [54]. We should avoid semantic shifts, and the methods are introduced in
Section 3.3.1. On the other hand, covariance shifts arise when the input data distribution
varies between training and testing due to biased sampling or inconsistencies during data
collection [56]. An example would be a domain gap between the training and test data. For
instance, if a model is trained on synthetic data for a segmentation task and the training
set lacks real-world factors such as lighting variations or texture reflections, the model’s
performance in real-world conditions may suffer. The data feasibility focus of our paper also
means this kind of covariance shifts OOD data.

Traditionally, OOD data has been intuitively regarded as harmful for training because it
is assumed that the training data should be consistent with the test data. This assumption
holds, especially in semantic shifts as previously mentioned. The existing method includes
OOD detection and open set recognition to handle the semantic shifts in OOD data. For OOD
detection, we could aim to eliminate OOD data from the test set by ensuring the training set
covers as many scenarios as possible. However, given that real-world scenarios are infinite and
dynamic, and our training datasets are constrained by time, resources, and potential biases
in data collection, it is practically impossible to guarantee that the training distribution will
perfectly match the test distribution—especially in real-world applications. This mismatch
often results in performance degradation in machine learning algorithms. Various methods
have been developed to detect OOD data and mitigate its harmful effects. Additionally, a
model must recognize unseen classes and classify them as "unknown". As a result, open-set
detection methods offer a potential solution to this challenge.

OOD Detection Methods

One primary approach is during the inference stage. Initially, the softmax operator [57]
combined with a threshold was used to detect OOD data. The idea is that the minimum
softmax value for ID data tends to be higher than the maximum value for OOD data.
However, this method fails in cases where OOD data exhibits overconfidence. To address this,
a temperature scaling factor [58, 59] is proposed to alleviate overconfidence and add small
noise to input images to widen the score gap between ID and OOD data. The limitation of
the softmax operator is that it is not proportional to data distribution and, therefore, may not
capture input data effectively. In contrast, energy-based methods are more linearly related
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to data distribution, prompting [60] to propose replacing softmax with an energy function.
In addition to comparing the model’s output, methods like calculating the Mahalanobis
distance [61] between input data and selected prototypes using high-dimensional features
have been proposed. This technique, however, often requires some known OOD samples.
To avoid relying on such samples, activation values from neural networks can be leveraged
to identify OOD data [62, 63]. Other approaches combine feature-level information and
logits from the model output, using the raw data and its semantic content to improve OOD
detection [64].

Another key approach occurs during the training phase. The central idea is that enhancing
ID data detection improves OOD detection performance. For instance, [65] employs a Vision
Transformer (ViT) backbone to better extract input features that help distinguish OOD data
within the feature space. Another strategy cite zhang2023mixture, yang2024generalized
involves exposing the model to OOD data by mixing ID data with unlabeled OOD data,
allowing the model to learn how to detect OOD samples.

Models must be capable of identifying unknown classes rather than arbitrarily assigning
them to known ones, as this can lead to critical failures. For instance, while accounting for
every edge case in self-driving cars is impossible, the system must include failure-degradation
mechanisms to handle OOD driving scenarios. If a self-driving car misclassifies an oddly
shaped object as a vehicle on the highway, it could jeopardize passenger safety. To address
this issue, [66] proposes a method for generating counterfactual images using a GAN model,
which places data near the boundaries of real ID data in feature space. They generate near-
boundary samples by introducing a new GAN training loss incorporating a K-class classifier
score(where K represents ID classes). A classifier is trained with K+1 classes to help the
model identify OOD data effectively. Furthermore, foundation models, which leverage vast
amounts of pre-learned knowledge, can enhance the judgment of OOD data [55].

These techniques are effective in addressing semantic distribution shifts. However, we
should adopt a more nuanced perspective when it comes to covariance shifts. Covariance
shifts can offer certain advantages, which will be discussed in the next section.

3.3.2. The Impact of OOD Data

Augmented data as OOD samples

It is well-established that data augmentation is essential for training neural networks, es-
pecially when larger datasets are required to fine-tune the numerous parameters. Data
augmentation methods such as flipping, cropping, scaling, and rotation are employed to
overcome this limitation. Significantly, some advanced data augmentation methods like
CutMix [67] will play more effect: The CutMix supposes we have two images, xA and xB.
CutMix randomly selects a rectangular region from xA and replaces it with the corresponding
region from xB.

Correspondingly, the labels yA and yB are mixed based on the area ratio of the mixed region.
However, these data augmentation methods cause the training data to be out-of-distribution.

Yoshua et al. [20] were among the first to demonstrate that combining clean data with

20



3. Related Work

perturbed data generated through data augmentation methods can help deep networks
achieve human-level performance on the MNIST dataset. These perturbed data are typically
generated using Gaussian smoothing or noise techniques. They argue that deep networks
benefit significantly from these OOD examples. One possible explanation is that the lower
layers of the network, which learn from both ID and OOD data, compute a hierarchy of
features shared across tasks. This shared representation enhances the model’s generalization
ability.

Similarly, Geiping et al. [19] investigate the effectiveness of various data augmentation
techniques. They use a metric to measure the amount of equivalent original data added
by different augmentation methods. Their experiments show that for small-scale datasets
(around 50,000 samples), data augmentation can effectively double the amount of valid data.
However, data augmentation has a diminished effect on larger datasets (around 250,000
samples). Nonetheless, they acknowledge that some augmentation methods, such as rotation
combined with random cropping, can introduce near-OOD data compared to the original
dataset.

To investigate this, they trained a ResNet-18 architecture by randomly sampling rotations
from each class to serve as training data and using a disjoint set of rotations as test data. They
also employed horizontal flip and random crop augmentations to generate OOD samples, as
these transformations cannot be produced through simple rotations. The experimental results
show that OOD data improve classifier performance on rotated images. This improvement
can be attributed to two factors: first, OOD data help the model learn invariant features, and
second, they introduce stochastic factors during gradient descent, which can help the model
avoid local minima by improving the optimization process during training.

Further Investigations into OOD Data Effects

However, this work provides only a preliminary conclusion regarding the benefits of OOD
data, as it studies the effect of only one type of OOD data and does not explore its impact.
Similarly, Silva et al. [18] conducted experiments to further investigate these effects. They
studied two types of OOD data. Similar to [19], the first type involved using rotated or
blurred samples as OOD data but with a quantitative evaluation of varying rotation angles
and blur strengths. The second type used different classes, treating some as ID data and
others as OOD data.

In their experiments, Silva et al. explored various OOD and ID data mixtures, keeping
the amount of ID data constant while increasing the amount of OOD data. They found that
if the domain shift was sufficiently small, the generalization error on the original test set
consistently decreased as the ratio of OOD data to ID data increased. This finding aligns with
the synthetic data generation goal and the [19] results, indicating that near-OOD data can
positively influence the training process. However, the test error displayed a non-monotonic
trend when rotation angles or blur strengths were increased. This trend is shown in Figure 3.7.
In these cases, a small amount of OOD data was beneficial, but it became harmful as OOD
data began to dominate the training distribution. This trend was also observed when using
OOD data from different categories. Additionally, when OOD and ID mixture training was
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applied to different domain tests, such as the DomainNet dataset, the OOD data from other
domains followed a similar non-monotonic trend. They also experimented with the effect
of different ratios of OOD data to ID data within a mini-batch. Their findings indicate
that varying the proportion of OOD samples in each mini-batch influences the gradient
optimization process, which in turn impacts the model’s performance.

So far, we have discussed several works that examine the impact of OOD data in the training
process. While OOD training data comes from different sources than the original training
data—leading to distribution misalignment with the original training and test data—these
studies show that if the degree of OOD data is controlled or kept within a certain ratio, it
can improve a model’s generalization ability. However, most of these experiments have been
conducted using simple architectures, such as ResNet, and on essential datasets like MNIST,
PACS, or CIFAR-10. In our work, we aim to expand the study of OOD data to more complex
scenarios using diffusion models, and we will leverage more advanced architectures like the
CLIP model to further explore the effects of OOD data.

3.4. Image Editing Techniques

3.4.1. Traditional Methods

Figure 3.8.: The image restoretion effect from the original paper [68, 69, 70]. We could see the
MAT method could handle a very large missing area.

The following two approaches achieve effective outpainting without relying on inpainting
techniques based on Stable Diffusion. They do not require any text prompts, only an input
mask. LAMA [68] utilizes Fast Fourier Convolutions (FFC) [71] to maintain high efficiency
while enlarging the receptive field, allowing for a global understanding of the inpainting
region. An improved strategy for generating large masks during training activates the
network’s potential for better reconstruction.

Efficient long-range information interaction plays a crucial role in image restoration. Previ-
ously, methods capable of modeling long-range dependencies were limited to low-resolution
images. MAT [69] is the first Transformer-based model that directly handles high-resolution
image restoration. It employs dynamic masking to identify effective tokens for efficient
long-range dependency modeling, making it suitable for repairing large missing areas. Our
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tests show that MAT performs well even on datasets outside the training data.
There are follow-up works such as DiffIR [70] and DiffRIR [72], which combine diffusion

models with LAMA for image restoration tasks. However, our tests indicate that their
generalization performance on out-of-training data is not as strong as the aforementioned
baseline models. Some generated samples could be found in Figure 3.8.

3.4.2. T2I SD Model for Image Editing

Inpainting is a fundamental technique in image editing, with outpainting as a related method.
Outpainting extends the boundaries of an image to generate content beyond the original
input, often used to complete or expand backgrounds. While some models [73] are specifically
designed for outpainting tasks, they generally require retraining for new samples and are
tailored solely for outpainting.

Diffusion Inpainting Models

Diffusion Inpainting [74], on the other hand, is an image restoration technique based on
diffusion models that fills or repairs missing regions in an image. To enable image editing
using the T2I SD model, we could:

1. Fine-Tuning a Pretrained Stable Diffusion Model: In this approach, the original image,
the masked image (with the masked regions set to zero), and the corresponding mask
are input into the SD model. The SD model is fine-tuned using the target masked image
as the training target. SDXL inpainting [75] adopts this strategy and fine-tunes the
model using large-scale datasets such as LAION-2B [75].

2. Feature-Level Inpainting Without Fine-Tuning: In this method, fine-tuning of the SD
model is not required. Instead, at each step, the features at the latent layer corresponding
to the unmasked regions are replaced with the noisy features from the original image
at the current timestep. The features of the unmasked regions are determined by the
input image, while the masked regions undergo reconstruction by calculating the noise
with the UNet. This approach effectively restores the masked area by leveraging the
features from the original image.

Normally there are several important parameters for inpainting models to consider during
usage:

• Guidance Scale: This parameter acts as the weighting factor for classifier-free guidance.
Higher values make the output more closely match the input conditions (e.g., text
prompts).

• Strength: This parameter determines the level of noise added to the base image,
influencing how closely the inpainted region resembles the original. For instance, if the
strength is set to 0.8 and the total number of steps is 20, then noise will be added for
0.8 × 20 steps, while the remaining 4 steps will not add noise. This can be interpreted
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as scrambling 80% of the features while retaining 20%. If the strength is 1, the original
image is completely disregarded, while if it is 0, the output remains identical to the
original.

• Number of Inference Steps: This parameter controls the number of denoising steps
performed during image generation. More steps result in higher image quality, allowing
for more refinement, but increase the inference time. For example, if the strength is set
to 0.8, only 0.8 × 20 denoising steps are required to restore the image.

Figure 3.9.: Our image color editing experiments using FPE method on Oxford-Cars
Dataset [76].

Specialized Methods

FPE [77] is an image editing method based on attentive maps, improving upon the p2p [32]
approach without requiring task-specific retraining of the original SD model. In p2p, it
was observed that the cross-attention layers exhibit representations of relevant tokens, with
attention maps specific to certain tokens appearing even in the early cross-attention layers.

The FPE method builds on this by discovering that self-attention maps contain structural
and spatial information, while cross-attention maps retain class-related attributes. Therefore,
when editing the color or texture of an object while preserving its class-specific features,
FPE replaces only the self-attention layers corresponding to the target color or texture. This
selective replacement yields more meaningful edits to the desired attributes.

In Figure 3.9, we demonstrate color modification experiments on images from the Stanford
Cars dataset [76]. The method achieves excellent results, particularly when editing light-
colored images, where the modifications appear both accurate and visually consistent with
the original object.

InstructPix2Pix [78] is an instruction-based image editing model that enables specific
editing operations on images using natural language commands, such as changing colors,
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adding objects, or adjusting shapes. This model is built on top of the SD 1.5 model and
fine-tuned on a large-scale image editing dataset. It can handle various editing tasks without
requiring separate training for each task. By combining multimodal features from text and
images, InstructPix2Pix achieves automatic image editing based on instructions, significantly
reducing user effort.

However, due to the lower version of the SD model and the limitations of the training
dataset’s domain coverage, real-world performance on user-provided data is often less
impressive compared to the examples shown in the paper.

Several follow-up works have expanded on InstructPix2Pix, such as:

• Hive [79]: This approach uses the same prompt-to-prompt technique to generate
more training data, extends the base model to SD v2.1, and employs reinforcement
learning-based methods to train the image editing model, yielding better editing results
compared to InstructPix2Pix.

• MGIE [80]: This work uses the same training dataset and SD 1.5 base model but
emphasizes the limitations of using CLIP’s text encoder alone for understanding com-
plex modification instructions. Since CLIP employs static captions, MGIE incorporates
language augmentation with Multimodal Large Language Model(MLLM).

Despite these improvements, these subsequent models are larger and may struggle with
generalization on untrained datasets. Like our experiment results in Figure 3.10.

Figure 3.10.: Our experimental results using InstructPix2Pix on Tiny-ImageNet [53].

3.5. Large Language Models and Vision-Language Models

As discussed earlier, various models have been employed to improve synthetic image gen-
eration, including methods for prompt augmentation, enhanced language generation, and
filtering generated samples. Given the rapid advancements in this field, providing a compre-
hensive overview is beyond the scope of this work. Instead, we will introduce a few selected
representative models to facilitate a better understanding.

BERT

BERT [84] is based on a Transformer encoder architecture and was the first to introduce the
Masked Language Modeling (MLM) loss for self-supervised pretraining. The architecture is
the encoder part of Figure 3.11 a).The MLM task involves randomly masking approximately
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Figure 3.11.: The representative methods including a) Transformer [81] architecture, b)
CLIP [21] , c) BLIP [82] , d) LLavA [83].

15% of the input tokens and predicting the original tokens from the masked ones. The
corresponding loss is calculated as:

LMLM = − ∑
i∈M

log P(xi|x̂), (3.2)

where M is the set of masked positions, xi is the original token, and x̂ is the corrupted input
sequence.

BERT also employs the Next Sentence Prediction (NSP) loss to determine if two sentences
are consecutive. The NSP loss helps the model learn relationships between sentences. Due to
its encoder-based architecture, BERT is more suitable for extracting textual features.

T5

T5 (Text-to-Text Transfer Transformer) [85] is an encoder-decoder Transformer model that
generates output sequences in an autoregressive manner, using the standard cross-entropy
loss. The architecture is the Figure 3.11 a).

The core idea of T5 is to unify all NLP tasks (such as translation, question answering,
and text classification) into a single text-to-text format, enabling cross-task learning across
various natural language tasks. It is pretrained on large-scale text data using a fill-in-the-blank
objective and then fine-tuned for specific tasks, providing strong generalization capabilities.
Compared to BERT, T5 is more widely used in dialog tasks.
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CLIP

CLIP (Contrastive Language-Image Pre-training) [21] is a multimodal model with a dual-
tower structure, where a Transformer-based encoder processes both the entire image and
its corresponding textual description. Using contrastive learning, CLIP maps images and
text into a shared embedding space, allowing them to be matched via cosine similarity. The
objective function, known as the InfoCSE loss, maximizes the similarity of correct image-text
pairs while minimizing the similarity of incorrect pairs:

LInfoCSE = − log
exp(sim(v, t)/τ)

∑j exp(sim(v, tj)/τ)
, (3.3)

where sim(v, t) is the cosine similarity between image embedding v and text embedding t,
and τ is a temperature parameter.

CLIP is pretrained on a large number of image-text pairs, resulting in strong zero-shot
classification and retrieval capabilities. The method is the Figure 3.11 b).

LLaMA

LLaMA (Large Language Model Meta AI) [86] is a well-known open-source lightweight LLM
designed to reduce the training and inference costs of large language models. It employs
a Transformer decoder-only architecture, with several optimizations to improve training
stability, such as using pre-normalization (instead of post-normalization).

Additionally, LLaMA replaces absolute positional encoding with RoPE (Rotary Position Em-
bedding). LLaMA-7B surpasses GPT-3-175B [3] on most benchmarks and exhibits competitive
performance compared to other larger models, making it suitable for text generation, dialogue
systems, and question answering. It strikes an excellent balance between computational cost
and performance.

Vicuna

Vicuna [87] is an open-source dialogue model fine-tuned from LLaMA-13B, achieving perfor-
mance close to ChatGPT. The training data consists of 70K user conversations. The success of
Vicuna is attributed to fine-tuning on user feedback data, which enhances the model’s ability
to understand and generate natural language dialogues.

BLIP

BLIP (Bootstrapping Language-Image Pre-training) [82] is a multimodal pretraining frame-
work that introduces cross-modal encoders and decoders to enable the flow of information
across modalities. The term "bootstrapping" refers to its iterative training process, where
the training data—composed of noisy web-sourced image-text pairs—undergoes filtering to
improve quality. A filter model is used to remove inappropriate labels, while a captioning
model generates captions for web images, and the refined data is then used to further train the
original model. They use Image-Text Contrastive Loss (ITC), Image-Text Matching Loss (ITM)
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and Language Modeling Loss (LM) to gain a strong understanding of both visual and textual
information, making it suitable for tasks such as text generation, image-text alignment, and
retrieval. The loss could be found in the top of the Figure 3.11 c). Due to these advantages,
BLIP is widely used as a captioning model in various applications.

LLaVA

LLaVA [83] is a prominent model for multimodal learning and currently stands out among
open-source multimodal models in terms of performance. Its core design utilizes an advanced
pretrained image feature extractor, CLIP ViT-L/14, and a large language model (LLM) for
information fusion and text output. A lightweight projection layer is incorporated to facilitate
the reuse of pretrained image and text models. The architecture could be found in the
Figure 3.11 d).

The training process consists of two stages:

1. Alignment: Similar to CLIP, LLaVA first aligns image features to the text feature space.

2. Fine-tuning: The model is then fine-tuned on a specialized multimodal instruction-
based question-answering dataset, enabling it to handle multimodal dialogue tasks
more effectively than models using text alone.

Through continuous improvements in data quality and scale, and iterative experimentation
with LLM architectures (e.g., using Vicuna-1.5 with 7B and 13B parameters), LLaVA has
evolved to versions like LLaVA 1.5 [88] and LLaVA Next [89].

InternVL

InternVL’s [4] architecture is similar to LLaVA, using a ViT-based image feature extractor
and LLaMA as the LLM. However, it differentiates itself through a broader range of train-
ing datasets, an enlarged visual encoder, and a more sophisticated projection layer called
QLLaMA. Compared to traditional multimodal models, InternVL can handle more complex
multimodal tasks with superior performance.

ChatGPT

ChatGPT [3], developed by OpenAI, is a large-scale conversational model based on GPT-3. It is
fine-tuned for open-domain dialogue, enabling coherent and natural conversation generation.
The GPT model is a Transformer-based language model trained in an autoregressive manner
to predict the next token given the previous tokens, using the language modeling loss.

With models such as GPT-3.5 and beyond, additional supervised fine-tuning with instruc-
tions and Reinforcement Learning from Human Feedback (RLHF) [90] are used to improve
model performance. The parameter size of GPT-3 is 175B, and it utilizes extensive training
data.

While ChatGPT’s API allows for large-scale data generation, it is not an open-source model,
and usage involves associated fees.
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3.6. Grounded Mask Generation

Figure 3.12.: The architecture for BLIP, GroundingDino and SAM [91, 92, 6].

The first stage of grounded mask generation usually is grounding detection. Grounding
detection aims to perform detection in an open-world setting, where the goal is to complete
zero-shot detection tasks. Then we could using the detection results for the downstream
open-set segmentation task. We introduce several representative models below.

GLIP

GLIP(Grounded Language-Image Pre-training) [91] follows a similar approach to CLIP but
extends it to the more fine-grained task of open-world detection. While CLIP matches an
entire image with its corresponding text, GLIP calculates the similarity between each detected
bounding box and all object category texts. Like CLIP, it constructs positive and negative
samples for contrastive learning. The model is shown in Figure 3.12 a).

GLIP employs an interactive model structure that uses self-attention and cross-attention
mechanisms to integrate and fuse features from both text and image inputs, thereby enhancing
learning. In GLIP-v2, an additional masked language modeling loss is introduced, allowing
the model to achieve better fine-grained understanding of images and corresponding text,
enabling it to perform tasks such as multimodal question answering.

GroundingDINO

GroundingDINO [92] is a model designed for open-world object detection and annotation. It
combines object detection with language understanding to perform natural language-based
object detection for previously unseen objects or categories. Inspired by the success of the
GLIP model in open-world detection and the pretraining of DINO in the detection domain,
GroundingDINO leverages a Transformer-based detector architecture, which has proven
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effective for handling large datasets and integrating features from text and vision Transformer
models.

GroundingDINO utilizes a Swin Transformer-based [93] visual feature extractor, similar
to DINO, and employs a BERT model [84] as the text feature extractor. To enhance the
model’s language understanding capabilities, the authors designed a text-image fusion layer
based on deformable attention (similar to the self/cross-attention layers in GLIP), as well as
a language-guided visual feature selection module and a decoder for detection tasks. The
details are shown in Figure 3.12 b).

In addition to the aforementioned models, open-world detection remains an active research
field. Approaches like YOLO-World [94] extend the YOLO model for detecting bounding
boxes in open-world settings. Similar to contrastive learning, they compute the similarity
between the image features within bounding boxes and corresponding text features, enabling
zero-shot detection.

SAM Series

SAM(Segment Anything Model) [6] is a general-purpose model for image segmentation that
allows segmentation through various prompts, including point prompts, box prompts, and
mask prompts. It uses a ViT-based image encoder, with prompts having their encoder. In the
decoder, different features are fused through cross-attention, and the output is produced by a
prediction head. The details are shown in Figure 3.12 c).

Compared to traditional segmentation models, SAM don’t rely on specific category labels
or densely annotated data, significantly enhancing the generalization and usability of seg-
mentation tasks. SAM is pretrained on a large-scale image dataset with masks, enabling it to
handle images of various types and resolutions. It can generate fine-grained segmentation
results, not limited to specific object categories. SAM2 [95] uses more training data and could
achive a higher segmentation accuracy, also the model could expand to video segmentation.

By feeding the bounding boxes obtained from models such as GroundingDINO into SAM
as prompts, zero-shot mask generation can be achieved using just the corresponding class
names. This combination is commonly known as the GroundingSAM [96] model. In practice,
this combination performs well, and we adopt this approach in our work.

RMBG Model

The RMBG model(Remove Background Model) [97] is specifically designed for removing
backgrounds from images, preserving the foreground objects. It typically uses a U-Net or
similar encoder-decoder architecture and is optimized with a cross-entropy loss function to
improve foreground-background segmentation accuracy.

During training, the model learns to accurately distinguish between foreground and
background from a large set of annotated image data. Compared to traditional background
removal methods, the RMBG model handles complex backgrounds more precisely, especially
when dealing with hair, semi-transparent objects, and other fine details. Its results are
comparable to those achieved by models like GroundingDINO.
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3.7. Parameter Efficient Fine-tuning Methods

Figure 3.13.: The visualization summary for various fine-tuning methods, different method is
highlighted by different color.

Classifier Tuning

Classifier Tuning [98] is a strategy focused on adjusting only the parameters of the classifier,
typically used in transfer learning and model fine-tuning. When the feature extractor of
a model (such as the initial layers of a CNN or Transformer) has been pre-trained on a
large-scale dataset, Classifier Tuning keeps the parameters of the feature extraction layers
fixed, while only fine-tuning the final few layers of the classifier to adapt to the target task.
The method is highlighted in Figure 3.13 in yellow.

Since it adjusts only a small number of parameters, this approach is more efficient in
terms of training time and computational cost. Compared to training a model from scratch,
Classifier Tuning is more effective on small datasets, as it leverages pre-trained features to
enhance the generalization ability of the classifier. By fine-tuning only the classifier layers,
it allows for subtle adjustments specific to the task while maintaining the feature extraction
capabilities, reducing the risk of overfitting.

TPT

Although Classifier Tuning can achieve good results, it may cause the model to lose its
original generalization ability. TPT (Test-Time Prompt Tuning) [99] optimizes the text input
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during test time based on a single test sample, without requiring any labels or additional data
outside the zero-shot test samples. For image classification tasks, a unique prompt vector is
introduced for each task, which can be dynamically adjusted during the model’s forward
pass.

Since no labels are needed, an unsupervised loss function is designed, where different
views of the input image are generated by appropriate cropping, avoiding noise from random
augmentation. The loss function is defined as the consistency between the predictions of
different views of the test sample, minimizing the entropy of the average prediction probability
distribution. This optimizes the learnable vectors added to the text input.

VPT

VPT(Visual Prompt Tuning) [100] is a method similar to Prompt Tuning in the text domain,
but applied to the visual domain. It introduces a small number of trainable visual prompts
(prompt tokens) that are added before the input image features, resembling text prompts in
natural language processing. The prompts can be added to the first layer of the feature input,
or to each layer.The method is highlighted in Figure 3.13 in red.

In experiments, some benchmark settings show that VPT can outperform full-parameter
fine-tuning. The improvement of VPT over full fine-tuning is more significant in scenarios
with limited data, and it still performs well even when the dataset size increases compared to
other fine-tuning approaches.

CoOp

To effectively apply pre-trained vision-language models to downstream tasks without exten-
sive fine-tuning, prompt engineering can be used, but it often requires expert knowledge and
time-consuming design. CoOp (Context Optimization) [101] transforms fixed text input into
learnable prompts combined with the class names, allowing the model to learn task-specific
textual inputs. Experiments show that CoOp significantly improves performance over zero-
shot learning with only a few downstream samples. The method is highlighted in Figure 3.13
in green.

CoCoOp

While CoOp performs well on downstream tasks, it tends to overfit and exhibits poor
performance on unseen classes. To address this, CoCoOp [102] extends CoOp by adding
a lightweight network (Meta-Net) that incorporates instance-level tokens obtained from
the image encoder, enhancing CoOp’s adaptability during training. However, in practice,
CoCoOp sometimes underperforms compared to the original CoOp on seen classes, despite
its improvements on unseen classes, and incurs higher computational costs.
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LoRA

LoRA(Low-Rank Adaptation) [103] is a low-rank adaptation method for efficient fine-tuning
of large models. It introduces low-rank decomposition into the pre-trained weight matrix
to reduce the number of parameters that need to be fine-tuned, making it suitable for task
adaptation in large models. The method is highlighted in Figure 3.13 in purple.

h = W0x + ∆Wx = W0x + BAx (3.4)

where:

• W0 ∈ Rd×d represents the pre-trained weights.

• ∆W = BA, with B ∈ Rd×r and A ∈ Rr×k.

• r ≪ min(d, k), ensuring that the rank of the adaptation is low.

• A is randomly initialized, while B is initialized to zero, making AB zero at the beginning
of training.

LoRA adjusts only a small number of parameters instead of the entire model, significantly
reducing the computational resources required for fine-tuning. Compared to traditional fine-
tuning methods, LoRA maintains performance similar to full fine-tuning while optimizing a
much smaller number of parameters.

In addition to the common methods discussed above, there are other approaches, such
as LogoPrompt [104]. This method involves overlaying the text describing a new concept
onto the corresponding image of the concept and inputting this combined data into the SD
model. The text prompts are similar to CoOp, includes learnable parameters, allowing for
generalization to small sample data during training on new concepts.
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In this section, we will first provide a comprehensive task formulation in Section 4.1, followed
by an introduction to our MCSDG pipeline in Section 4.2. A detailed explanation of how
we validate the effectiveness of feasible(ID) and infeasible(OOD) data will be presented in
Section 4.3.

4.1. Task Formulation

Figure 4.1.: Overview of our method, including MCSDG pipeline and CLIP Training.

For a dataset which consists total C (C) categories, our goal is to utilize an image classifier
to analyze the impact of and the feasible (ID) or infeasible (OOD) data ISyn corresponding
to each individual class ci, where i = {1, ..., C}. The feasible or infeasible images I in DSynB,
DSynC and DSynT are generated by a text-to-image generator G, based on specific prompts P
generated by GLLM.

4.1.1. Data Generation Strategy

Feasible ID data is generated using feasible prompts PID, where the prompt set PID ∈
{Pf b, Pf c, Pf t}. Conversely, OOD data is generated using infeasible prompts POOD, where the
prompt set Pood ∈ {Pi f b, Pi f c, Pi f t}. The subscripts means:
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• Background Bi: The background of a image for the category ci.

• Color C(Colori): Represents the color of the primary object in a image of category ci.

• Texture Ti: Defines the material properties associated with category ci. Note that texture
properties also encompass color characteristics.

4.1.2. Verification by A Classifier

The designed classifier consists of the following components given C categories:

• Text Encoder: vtext = fθ(T) maps the category text input ti ∈ T, i = {1, ..., C} to a vector
representation vtext ∈ RC×d.

• Image Encoder: vimage = fθ(I) maps the image I to a vector representation vimage ∈ Rd.

• Classifier: y = m(v), which computes the cosine similarity between the image fea-
tures vimage and all text features vtext to generate a probability distribution over the N
categories.

The classification result is computed using the following cosine similarity formula:

CosSim(vimage, vtext) =
vimage · vtext

∥vimage∥∥vtext∥

The whole process is visualized in Figure 4.1.

4.1.3. Training and Evaluation Strategy

Specifically, the classification model is trained and evaluated under three different settings:

• Training with only the real dataset: Using real images for training.

• Training with only the synthetic dataset: Using the generated synthetic datasets for
training.

• Mixed training: Combining real data with synthetic data for training.

By analyzing the classifier’s performance under these different training conditions, we
explore how feasibility influence the model’s classification capabilities.

4.2. Generating Minimal-Change Synthetic ID and OOD Data

Due to the lack of an appropriate real-world minimal attribute modifications pairs, we use
the T2I generator G mentioned in the section 4.1 to construct our MCSDG pipeline.
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4.2.1. Generate Guidance Prompt

To generate feasible or infeasible images, we need to provide corresponding feasible prompts
PID and infeasible prompts POOD for each image. The core of the prompt P lies in creating
corresponding prompt words W that describe the background B, color C and texture T for
each category ci.

To generate as many accurate feasible and infeasible prompts as possible, we utilize an
advanced language model, ChatGPT-4 [3]. To avoid errors or repetitive content, we employ
In-Context Learning[3], providing the model with positive examples Example+ and negative
examples Example− to help the model better understand the task, and using a template to
clearly define the output format.

Some generated prompt words W may contain overly abstract nouns. For infeasible
backgrounds in the pets category, the model might generate phrases like "freezing tundra" or
"deep sea." Such prompts can result in images lacking the desired level of background detail
and the final output will have vague background structures. To improve the fine-grained
detail and realism of the generated backgrounds or textures, we instruct the model to append
a brief explanatory description when generating prompts, providing more detailed guidance
for image generation.

An example of our generated prompts is as follows: the [Attribute] represent the
feasible/infeasible background/color/texture, [CLASS] represent a specific class ci:

Prompt Example. "Task: As an AI language model, generate [Attribute] where the given class
of objects typically exists (’feasible’) and where they absolutely cannot exist (’unfeasible’). For
each [Attribute], provide a one-sentence description detailing its visual appearance. You should
adhere to the specified criteria.
Criteria:

• ...

Positive Example:

• Object Class: [CLASS]

• Question: Provide five different [Attribute] for the object class, each accompanied
by a concise visual description.

• Answer:

– ...

Negative Examples:

• The answers are not acceptable as follows:

– ...

• Reasons: ...
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Question: Please give me [NUMBER] different [Attribute] for the class [CLASS]; in the
meantime, also give me corresponding detailed descriptions for the given [Attribute].

Figure 4.2.: The prompt example for ChatGPT [3].
Using the above prompts, we can obtain many preliminary feasible PID and infeasible

POOD prompts. Although large language models possess broad knowledge across various do-
mains, they may sometimes struggle to accurately distinguish between feasible and infeasible
attributes for a specific category ci. For instance, ChatGPT might generate “yellow” or “blue”
as feasible colors for the airplane category “737-500”. Due to these colors not appearing in its
real training set, they should be treated as "infeasible colors." If such prompts were used in
generation, our feasible synthetic dataset would instead contain infeasible samples.

To address this issue, we design additional prompts to instruct the model to perform
preliminary checks and filtering on its outputs. The related process is illustrated in Figure 4.3.
Specifically, for the attributes of a given category, the model filters out infeasible features
that do not align with the real attributes, ensuring that the generated prompts meet our
requirements. With the following prompt:

"Can you modify or filter your answers to ensure each
[background/color/texture] is definitely [feasible/infeasible] for
class [CLASS]? Please delete and ignore some of the answers if you
can’t guarantee them."

Background Color(Per CLS) Texture

Pets AirC Cars Pets AirC Cars Pets(Per CLS) AirC Cars
F IF F IF F IF F IF F IF F IF F IF F IF F IF

Raw output 50 70 50 70 50 70 10 10 10 10 10 10 8 50 30 50 15 70
Auto-filtering 47 64 36 68 44 67 6∼7 8∼9 7∼8 8∼9 7∼8 8∼10 7 42 25 46 12 64

Manual-filtering 43 50 22 50 31 50 5 5 5∼8 5∼6 5 5 5 27 24 44 7 57

Final Accept Rate 0.86 0.714286 0.44 0.71429 0.62 0.71429 0.5 0.5 0.5∼0.8 0.5∼0.8 0.5 0.5 0.625 0.54 0.8 0.88 0.467 0.814

Table 4.1.: The number of prompts which are generated initially by LLM, after self-filtering
and manual-filtering for each specific settings and some datasets. The Pets, AirC,
Cars refer to our experimental dataset introduced in 5.1.

Before finalizing the prompts, manual verification and confirmation are conducted to ensure
that the prompts input into the SD model strictly adhere to our requirements. Table 4.1 lists
the number of the initial and final confirmed prompts for each dataset. More details could be
found in Section A.1 and Section A.2.

4.2.2. Vanilla Generation Approach

To generate minimally altered synthetic images I = g(P|Ireal) based on text prompts
P while constrained by real images Ireal , we design a simple baseline workflow. First,
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Figure 4.3.: The prompt words generation and self-filtering process using ChatGPT-4 [3].

we use a fundamental prompt Pbase = "a photo of a [CLS]" and then make minor adjust-
ments based on the target attributes (background, color, texture). The final prompt is
P = Pbase.replace([WORD], w), as illustrated in Figure 4.4.

Generation Strategy

Since the feasible or infeasible prompt words W generated by ChatGPT might not belong
to the Generator model G’s training distribution, our goal is not to propose a new image
attributes editing method but rather the stable generation of a minimally altered dataset.
So we would like to develop an automatic generation pipeline as simple as possible. As
discussed in Section 3, several existing text-based image editing methods can intuitively
achieve our goal. We conduct preliminary experiments using the following text-based image
editing models: InstructPix2Pix model [78], FPE model [77], SDXL inpainting model [74], and
ControlNet model [40].

Mask Generation Workflow

The above methods like SDXL inpainting requires mask to edit the image, we design a mask
generation workflow based on grounding. This workflow is illustrated in Figure 4.5. It
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Figure 4.4.: Final prompt templates for SD model for background, color and texture settings.

uses Grounding Dino [92] to generate bounding boxes bboxi based on the category label
ci, and these bounding boxes are then fed into the SAM2 [95] model to produce masks mi
corresponding to category ci. For some samples where bounding boxes could not be generated,
we use the RMBG1.4 foreground-background segmentation model as a fallback to ensure each
sample have a corresponding mask. For ControlNet, we provide the Canny edge maps as
conditional inputs. When modifying the background, to ensure the preservation of foreground
structures, we first extract the foreground Foregroundi from maski and then generated the
corresponding Canny map based on Foregroundi. We directly obtain a complete Canny map
from the real image Ireal as the conditional input for color and texture modifications. The
corresponding used masks are visualized in Figure 4.6.

Figure 4.5.: The workflow of Grounding Mask to get arbitrary mask image.
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Figure 4.6.: The mask and canny images used in vanilla generation approach.

Analysis

We select three samples from different datasets and compare the results using these models.
Since the results visualization takes up too much space, we choose the background setting
to represent the editing results shown in Figure 4.7. The color and texture editing results
comparison are in Figure B.1 and Figure B.2 in Section B.1.

All experiments use the exact feasible or infeasible prompt words W. For InstructPix2Pix
and FPE, we use prompts similar to those in the original paper. Our guidance prompt
template shown in Figure 4.4 is used for SDXL inpainting and ControlNet. Our Minimal-
Change dataset has the following specific requirements: 1) When modifying the background,
the generated image should reflect the feasible or infeasible background described by the
prompt, maintain rich background details, and avoid giving the impression that the main
object is "floating" on the new background; 2) When modifying the color or background,
the shape of the main object should remain unchanged and consistent with the original
background.

We observe the experimental results and find that InstructPix2Pix performs well on
samples within its training data range. However, in many cases, it fails to make modifications,
especially in background changes. For example, when modifying backgrounds for pets,
InstructPix2Pix sometimes only outputs the background without preserving the subject, and
overall, its performance across the three modification settings is poor.

The FPE method, on the other hand, is specifically designed to maintain the structure of
the main object, making it unsuitable for background modifications. In our color modification
results, shown in Figure B.1, FPE excels in preserving structure but struggles to modify
original solid colors. For instance, FPE cannot change the color of intensely colored objects,
such as black cars and blue airplanes.

SDXL Inpainting performs well for background modifications, especially with pets, where
it meets our requirements in most cases. However, SDXL Inpainting struggles with airplane
backgrounds, and while it generally produces natural-looking changes in color and texture,
the modifications are often subtle compared to ControlNet. An explicit limitation with SDXL
Inpainting is that the original image heavily influences the modifications; for example, when
changing the color of a black car, the output often retains the original black color.

ControlNet, by contrast, is less affected by this constraint and demonstrates more effective

40



4. Approach

Figure 4.7.: The background attribute change setting results for four different base models.

color and texture changes. It meets our requirements, especially with infeasible airplane
color changes and feasible texture transformations. However, one drawback of ControlNet is
that objects sometimes appear to float in the background, affecting realism. While feasible
color and texture changes are generally accurate, ControlNet struggles with specific infeasible
attributes. For instance, when applying "mosaic tiles" as a texture to a car, the model does not
accurately represent this texture, likely due to unfamiliarity with such attributes, resulting
in incorrect outputs. As a result, we choose SDXL inpainting and ControlNet model for our
next generation candidate models.

4.2.3. Prior-Guided Generation for Improved Control

To further enhance the model’s performance, we propose a method based on prior information
(Prior) to guide the model in generating content that meets the requirements. Specifically, we
first use the Stable Diffusion model to generate raw background priors or raw texture priors
based on the prompt W, guiding the modification of backgrounds and textures. For color
modifications, we define a Color Bank from which the RGB values ValueRGB ∈ ColorBank
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corresponding to the prompt W are selected to generate the raw color prior.

Combining Priors with Real Images

When integrating generated images with real images, we first use the Groundingmask method
introduced in Section 4.2.2 to generate masks for the subject or background. For background
modification, we replace the background region of the original image with the generated
Background Prior. To maintain a natural relationship between the subject and background in
the generated image (e.g., ensuring that a pet remains grounded), we use a mask dilation
method to expand the original ground truth mask, preserving the spatial relationship between
the subject and the original background.

Figure 4.8.: Our Prior combination method with real image.

We apply the generated color or texture prior as an alpha channel (transparency channel)
overlay on the subject in the original image for color or texture modifications. This approach
provides the modified color or texture information while preserving the shape and structural
details of the subject. The process is shown in Figure 4.8.

In the SDXL inpainting model, we use the above method to get a prior image called Prior.
In addition to using the Canny edge map as a constraint for the ControlNet model, we also
used an image IP-adapter [46] to input prior information. Two prior images were provided:
one directly generated by Stable Diffusion called raw prior, and the other is the same Prior.

Analysis

This time we select color setting in Figure 4.9 here, the left generation results please refer
Figure B.3 and Figure B.4 in Section B.1. Figure 4.9 compares the generated color setting
results after introducing prior images. By incorporating prior information, generation quality
has significantly improved compared to the first section. The model could receive the precise
background, color, or texture we want to change to minimize the generation gap. For the
SDXL inpainting model, the background editions now meet the expected requirements. The
color and texture settings also perform very well; the main issue is that when the parameter
"strength" is small, we cannot change the original color or texture. However, suppose we
increase the value, although the target attributes can be generated. In that case, the details
of the subject may inevitably be altered, such as the plane’s engines or the car’s rear being
incorrectly modified to resemble the front. ControlNet ensures that the structure of the
main object remains unchanged when modifying color and texture. However, the results
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generated by ControlNet often appear less natural than those produced by inpainting, like
for the car color change setting. In some cases, such as the color change for pets, even the
feasible outputs appear less realistic than those generated without applying ControlNet’s
conditioning.

Figure 4.9.: The comparison results for SDXL inapinting and Controlnet with raw prior and
prior images. We randomly select the raw prior and prior images on the left for
visualization.

4.2.4. Ensuring Minimal Attribute Changes Data Generation Pipeline

Based on Section 4.2.3, we have demonstrated that introducing prior information significantly
improves the success rate of attribute modification compared in Section 4.2.2. And for the
background setting, the SDXL Inpainting has already fulfilled our requirements. From
the experiments in Section 4.2.3, we observed that SDXL inpainting and ControlNet have
their respective advantages for color and texture change. To ensure the generated image is
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as natural as possible while the subject structure should not be changed, we combine the
strengths of these two models by integrating both methods. Specifically, we first generate
a refined image using SDXL inpainting based on the prior image for the color and texture
settings. Then, this refined image is used as conditional input through the IP-adaptor [46]
into ControlNet to produce the final output.

Minimizing Background Modifications

For minimal background modification, we first use a Stable Diffusion model to generate the
corresponding background prior image based on the prompt P. Next, this initial image is
combined with the real image as introduced in 4.2.3. The combined prior, background region
mask, and corresponding prompt P are input into the SDXL inpainting model to obtain an
initially generated result. The detailed process is illustrated in Figure 4.10.

Figure 4.10.: Our minimal background change pipeline.

Minimizing Color Modifications

The color editing process is similar to background modification. First, based on the prompt
P, the required RGB image is retrieved from the Color Bank and combined with the real
image as introduced in 4.2.3. This is then input into the SDXL inpainting model to generate
an initial refined image. Subsequently, the refined image is used as conditional input, along
with the Canny edge map of the subject structure, the prompt P into the ControlNet model
to obtain the final output. Throughout this process, we ensure that the shape of the main
object remains unchanged while the final color is our desired and natural.

For the color and texture setting, due to the output of ControlNet might change the
original background, we design a "Final Process" step at the end. The final process process is
illustrated in Figure 4.11. The detailed total process is illustrated in Figure 4.12.
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Figure 4.11.: According to the mask image, we crop the original background image based on
real input and generated subject without background, then we just add the pixel
values from these two images.

Figure 4.12.: Our minimal color change pipeline.

Minimizing Texture Modifications

The texture modification process is similar to the color modification process, with the differ-
ence being that our texture prior is generated by the Stable Diffusion model. First, a Stable
Diffusion model generates the texture prior image based on the prompt P, which is then
combined with the real image and input into the SDXL inpainting model to produce a refined
image. Subsequently, the ControlNet model, along with the Canny edge map, ensures that
the image structure remains intact while using the refined image as a reference to generate
the final output image. The final output also undergoes a same "final process" step. The
detailed process is described in Figure 4.13.

Final Results Analysis

Figure 4.14 shows some final results in DSynB, DSynC, and DSynT. As seen, our method pro-
duces better image quality compared with generated images in Section 4.2.2 and Section 4.2.3,
ensuring minimal attribute modifications while maintaining the integrity and realism of the
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Figure 4.13.: Our minimal texture change pipeline.

main object.

4.3. Validate Effectiveness Using Minimal-change Synthetic Dataset

After establishing our MCSDG pipeline for generating a minimally altered dataset across
the three defined attributes, for each dataset, we generated DSynB, DSynC, and DSynT under
feasible and infeasible settings. These synthetic datasets will be used to train classifiers to
verify the impact of data feasibility by model performance.

4.3.1. Classifier Training

We selected the CLIP [21] model as the classifier. Building on prior research, we fine-tuned
both the image encoder (ViT-B/16) and the text encoder of CLIP by incorporating LoRA [103]
modules. The CLIP image encoder ViT-B/16 is based on the Vision Transformer (ViT)
architecture, which effectively captures spatial relationships in images using self-attention
mechanisms. The text encoder maps category labels into the embedding space to match with
image features. The ViT-Base model has an embedding size of 768, with 12 transformer layers
and a patch size of 16. For the text encoder, the input format is "a photo of [CLS]," where
"[CLS]" represents the class name ci in the real dataset. We employed a supervised learning
strategy to train the learnable parameters θ added by the LoRA modules in both the text and
image encoders, using a classification loss function while keeping the pretrained weights
frozen.

4.3.2. Loss Function

For the case where the classifier is trained using only the synthetic dataset, the loss function
is the cross-entropy loss between the synthetic images and their corresponding category
labels. In the mixed training scenario, the loss function is an average of the real data and the
synthetic data, with the weights controlled by a parameter λ. The loss function is formulated
as follows:
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Figure 4.14.: Generated images from our MCSDG pipeline, we choose the same samples and
prompts as Section 4.2.2 and Section 4.2.3 for show.

Lmix = λLreal + (1 − λ)Lsynthetic

where Lreal is the loss for the real dataset, Lsynthetic is the loss for the synthetic dataset, and λ

is the parameter that controls the balance between the real and synthetic data during mixed
training.
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5.1. Experiments Setup

Datasets

Since our modifications for background, color, and texture require both a well-defined
foreground object and a visible background, datasets with images dominated solely by
foreground objects, such as ImageNet [105], are unsuitable for our experiments. Furthermore,
fine-grained variations within an extensive category provide a better basis for comparing
feasible and infeasible attribute changes.

Thus, we selected three base datasets to generate our minimal-change synthetic datasets:
Oxford Pets [106] Dataset containing fine-grained pet classes, FGVC Aircraft [107] Dataset
containing fine-grained aircraft classes, and Stanford Cars [76] Dataset containing fine-grained
car classes.

Implementation Details

In our MCSDG pipeline, we use Stable Diffusion [2] v2.1 to generate prior images for
background and texture modifications. We employ the SDXL ControlNet [40] model based
on Canny edge images for methods involving ControlNet. The real images for modification
are sourced from each dataset’s training set. Detailed generation parameters for each dataset
and class can be found in Section A.3.

We randomly select seeds for the diffusion model during generation to ensure variation.
For each class in each real dataset, we generated synthetic data up to five times the size of the
original data. For instance, if a class contained 100 real images, we generated 500 synthetic
images to create the synthetic training set. Our main results are based on training with the
complete set of real images and five times as many synthetic images.

We use the Adam [108] optimizer to train the CLIP model, with specific training parameters
detailed in Section A.4. Notably, since the dataset sizes vary for the three training categories
introduced in Section 4,namely only real, only synthetic and mixed training, we ensure a
fair comparison by setting the same training iterations and adjusting the number of training
iterations to the equal iterations for 70 epochs of the mixed dataset setting. All experiments
are conducted using NVIDIA A100 GPUs.

Baseline Methods

Our primary approach focuses on self-comparisons based on our defined feasible and
infeasible settings. Specifically, we analyze CLIP classification performance by training on
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either only synthetic data or a mixed training. To assess the impact of feasible or infeasible
data on classification performance, we use a zero-shot CLIP model and a fine-tuned CLIP
model trained on real data under similar conditions. These serve as our baseline comparison
models.

Criterion

We use top-1 and top-5 accuracy on the test set for each dataset to assess our model’s
classification performance. For a given test sample i, let ŷ(k)i denote the k-th highest-ranked
predicted label, and let yi represent the true label. The top-1 accuracy A1 and top-5 accuracy
A5 are formally defined as follows:

A1 =
1
N

N

∑
i=1

1(ŷ(1)i = yi) (5.1)

A5 =
1
N

N

∑
i=1

1(yi ∈ {ŷ(1)i , ŷ(2)i , . . . , ŷ(5)i }) (5.2)

where N is the total number of samples in the test set, and 1(·) is an indicator function that
equals one if the condition inside is true and zero otherwise.

We assess the model learned knowledge by calculating the Jaccard index for the sets of
correctly predicted samples across the test set, defined as follows:

J(A, B) =
|A ∩ B|
|A ∪ B| (5.3)

where A and B represent the correctly classified samples in two different training configu-
rations. This metric is to evaluate correct samples overlap between two correct prediction
sets.

For dataset distribution analysis, we employ a a common metric for evaluating the distance
between generated and real data distributions: Fréchet Inception Distance score. The FID
score is defined as:

FID(X, Y) = ∥µX − µY∥2 + Tr(ΣX + ΣY − 2(ΣXΣY)
1
2 ) (5.4)

where µX and ΣX are the mean and covariance of the features for the real data X, and µY and
ΣY are those for the generated data Y.

Additionally, we calculate the CLIP Score, Dino Score and LPIPS Score to measure the data
similarity: 1) CLIP Score: We used the ViT-L/14 model [21], as it is the same CLIP model
used in stable diffusion training. 2) Dino Score: We employed the DINOv2-Base [5] model
for feature extraction. 3) LPIPS Score: [109]: The Learned Perceptual Image Patch Similarity
score is used to capture fine-grained visual differences between images, particularly in texture
and color. LPIPS is calculated as:

LPIPS(x, y) = ∑
l

wl∥ fl(x)− fl(y)∥2 (5.5)

49



5. Experiments

where fl represents features extracted from layer l of a pretrained network, and wl are learned
weights.

5.2. Classification Performance with Minimal-change Data

5.2.1. Main Quantitative Results

Pets AirC Cars Avg
Settings Real Synth

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

CLIP(Zero-shot) - - 91.000 99.673 23.8 61.319 63.181 92.744 59.327 84.579
Baseline

Real-finetune ! 95.234 99.891 84.544 97.254 93.004 99.540 90.927 98.895

Back 95.398 99.946 86.822 97.704 93.675 99.491 91.965 99.047
Color 94.510 99.891 80.048 96.805 90.693 99.279 88.417 98.658

Texture
!

93.818 99.836 81.157 96.475 90.880 99.379 88.618 98.563
Back + R 95.261 99.946 88.026 97.554 93.787 99.565 92.358 99.022
Color+ R 95.261 99.918 84.664 97.194 92.694 99.552 90.873 98.888

Feasible

Texture + R
! !

95.245 99.923 83.885 97.224 92.184 99.565 90.438 98.904

Back 95.261 99.891 84.094 97.164 93.812 99.528 91.056 98.861
Color 94.363 99.864 81.606 96.715 91.464 99.379 89.144 98.653

Texture
!

93.273 99.782 81.876 96.984 86.816 98.733 87.322 98.100
Back + R 95.343 99.918 88.441 97.884 93.725 99.540 92.503 99.114
Color+ R 95.153 99.891 83.974 97.374 92.520 99.515 90.549 98.927

Infeasible

Texture + R
! !

95.207 99.946 83.735 97.224 92.197 99.553 90.380 98.908

Table 5.1.: The main quantitative results. We refer "Pets" as Oxford Pets Dataset, "AirC" as
Fgvc Aircraft Dataset, and "Cars" as Standford Cars Dataset. The NSynth is 5 times
double the NReal . The green value is the baseline performance, while the read
values are the settings better than the baseline setting.

Table 5.1 compares the performance of models trained using baseline method, only using
synthetic data and mixed training. For mixed training, we fix the synthetic data number as
five times double the real images, while we use all of the real images from training set. We
make the following observations:(a) The zero-shot CLIP model performs well on the pets
dataset, achieving similar high performance across all proposed settings and almost reaching
an upper limit. (b) We observe that the real images have more effective compared with
synthetic images, as the training combined with real images will increase the performance. (c)
Compared to feasible and infeasible backgrounds, except for a slight decrease in the infeasible
background aircraft setting, the overall trend remains consistent: even when using only
synthetic data, the fine-tuned CLIP model can surpass baseline results for all datasets. And
the difference between feasible and infeasible setting is very small. For only using feasible
background synthetic data for training, the Top-1 accuracy can reach around 2.3% Top-1
Accuracy higher than the baseline. (d) However, examining color and texture settings reveals
a different pattern. Model performance does not reach baseline levels even for mixed training,
nonetheless the only synthetic training. This suggests that changing the objects’ color and
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texture do not effectively contribute to the model learning invariant features. For mixed
training, it even appears to hinder the classifier learning. (e) Feasible and infeasible data yield
consistent results across different settings.

We analyze this due to the classifier not only learn the objects’ shape, but also learn the
objects’ color and texture. The background change could be treated as an augmentation to
force the model learn the object’s own invariant knowledge. Although we ensure minimal
change for the subject, the feasible and infeasible color and texture still introduce misleading
information compared with test set that degrades classification performance.

We conducted additional experiments to investigate further: we disregarded feasible and
infeasible distinctions for each of the three modification settings. We drew synthetic samples
from both sets balanced, totaling five times the real data volume for training.

Takeaway:

Modifying color and texture poses significant challenges for model learning and, in
some cases, leads to decreased performance, whereas background adjustments can
offer positive effects.

Pets AirC Cars Avg
Settings Real Synth

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

CLIP(Zero-shot) - - 91.000 99.673 23.8 61.319 63.181 92.744 59.327 84.579
Baseline

Real-finetune ! 95.234 99.891 84.544 97.254 93.004 99.540 90.927 98.895

Back 95.179 99.891 86.582 97.524 93.837 99.890 91.866 99.102
Color 94.144 99.891 81.846 96.655 91.541 99.354 89.177 98.633

Texture
!

92.783 99.837 82.036 96.954 91.836 99.428 88.885 98.740
Back + R 95.288 99.918 87.991 97.644 93.601 99.540 92.293 99.034
Color+ R 95.016 99.864 83.315 97.314 92.768 99.590 90.366 98.923

Ours

Texture + R
! !

95.152 99.946 83.825 97.044 92.557 99.790 90.511 98.927

Table 5.2.: The experiment results for CLIP fine-tuning using mixed feasible and infeasible
data. The NSynth is 5 times double the NReal . The green value is the baseline
performance, while the read values are the settings better than the baseline setting.

In Table 5.2, we find similar overall classification results as in Table 5.2. By comparing with
separated experimental results, we conclude that classification performance remains nearly
unchanged after combining data. Combining feasible and infeasible data even marginally
improves final classification metrics compared to separate training for synthetic-only training
on the aircraft and cars datasets. However, this improvement diminishes when real data
is integrated. Thus, we infer that the feasibility of object attributes does not influence
classification outcomes. Instead, the modified attribute (e.g., background, color, texture)
significantly impacts classification results.
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Figure 5.1.: The Jaccard index matrix for three edition settings across three dataset. The
first row is the Oxford Pets [106] dataset, the second row is FGVC Aircraft [107]
dataset, and the last row is the Stanford Cars [76] dataset.

5.2.2. Classification Results Analysis

We evaluate the prediction correctness for each test sample to analyze whether each model
learns similar knowledge under different training settings. As shown in Figure 5.1, we see a
consistent trend across the three datasets. When trained using synthetic data, it will change
the learned knowledge. As the background setting example, while synthetic data can improve
classification accuracy, we observe that the Jaccard index is almost lowest compared only
real data and only real data settings(The first row). If mixed training is used, the model’s
predictions become more aligned with the baseline. But the Jaccard index still kind of different
with the only real data, meaning the model is effected by the synthetic data.

However, the knowledge learned under feasible and infeasible overlaps not high, indicating
that while performance metrics might be close, the underlying learned representations are
not identical.
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Takeaway:

The feasible and infeasible data lead the model to learn in different directions, while
they achieve very similar performance. The feasibility has no significant impact on
classification learning outcomes.

5.3. Analysis of OOD Data

5.3.1. Qualitative Results

Beyond the data samples in our methodology section, we have sampled two additional
examples from each of the three datasets. Due to space limitations, we present the samples
from Standford Cars [76] Dataset here; more additional samples can be found in the Figure B.5
and Figure B.6 in Section B.2. As shown in the Figures 5.2, the generated data meets our
minimal-change requirements. Specifically, feasible modifications align with natural visual
perceptions, allowing these samples to be considered as ID data. Conversely, we see clear
adaptations to the required transformations for infeasible modifications, especially in cases
where the target and original images differ significantly. These infeasible changes are highly
unlikely to be present in the test set, thus qualifying them as OOD data.

5.3.2. Distribution Analysis

We calculated the FID score [110] between our generated data and the corresponding real data,
using per class’s FID score as an indicator of distribution similarity. Additionally, for each
synthetic-real data pair, we calculated CLIP Score, Dino Score, and LPIPS score as measures
of similarity.

Figure 5.3 illustrates that our generated feasible data is closer to real images compared to
infeasible data, aligning with our definitions of in-distribution (ID) and out-of-distribution
(OOD) data. For the feasible settings, the generated samples can be considered as ID data, as
they have similar counterparts in the real training set. However, as discussed in Section 5.2.1,
color and texture modifications do not enhance model performance. One possible reason
for the lack of improvement is that color and texture modifications alter the training set
distribution. For example, in our aircraft dataset, white is the most common color, with some
instances of "red" or "yellow" aircraft. However, our generation method disrupts this balance
by generating five synthetic images for each real image. As a result, for each real sample, we
generate "red feasible" image (if that color exists within the class), which manually shifts the
color proportions and consequently the overall training distribution away from the original
balance. Although our intent was to emphasize class-specific characteristics, our experiments
show that this approach does not assist the model in identifying useful invariant features.
Instead, it appears to introduce challenges in the learning process.

Another possible reason is related to our assumption that the training and test set dis-
tributions are aligned. During dataset collection, some samples, like "red airplane," may
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Figure 5.2.: The selected generation visualizations for the Stanford Cars Dataset [76] are
shown below. Two real samples are listed at the top, with the corresponding
prompt word annotated in the bottom-right corner to indicate the prompts used.
For space considerations, we do not display the full prompts, omitting detailed
descriptions for background and texture.
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Figure 5.3.: The FID score settings compared using feasible and infeasible settings acorss
different dataset.

appear only in the training set and not in the test set, so augmenting such "red" samples in
the training set may not only cause domain shift with the training set, but also inadvertently
enlarge the domain difference with respect to the test set. The FID distribution further
supports this conclusion: while the feasible data distribution is closer to real images than
the infeasible data, both distributions are still somewhat distinct from the real images, with
feasible data only marginally closer.

A similar pattern is observed in the numeric table analysis, where feasible data is generally
more similar to real data than infeasible data. However, metrics like CLIP Score and Dino
Score, which do not capture fine-grained details such as texture or color, show close values
across different settings. LPIPS, by contrast, reflects some of these nuanced differences.
Nonetheless, since feasible data is also generated by modifying a real image, neither feasible
nor infeasible data can be similar as real images exactly. Moreover, because both feasible and
infeasible settings modify the same area of the real images, their similarity scores appear
close.

Takeaway:

The feasible data generated is closer to real images but does not necessarily improve
model performance, as altering color and texture disrupts the original training
distribution, adding complexity to the learning process.
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Pets AirC Cars Avg

Setting CLIP Score↑ DINO Score↑ LPIPS↓ CLIP Score↑ DINO Score↑ LPIPS↓ CLIP Score↑ DINO Score↑ LPIPS↓ CLIP Score↑ DINO Score↑ LPIPS↓

B 0.875 0.794 0.543 0.882 0.927 0.447 0.941 0.907 0.352 0.899 0.876 0.447
C 0.939 0.888 0.344 0.951 0.993 0.089 0.953 0.986 0.149 0.948 0.956 0.194Feasible
T 0.920 0.874 0.379 0.991 0.949 0.089 0.938 0.981 0.152 0.950 0.935 0.207
B 0.875 0.774 0.543 0.882 0.824 0.563 0.920 0.891 0.361 0.892 0.830 0.489
C 0.872 0.872 0.418 0.914 0.991 0.150 0.926 0.985 0.194 0.904 0.949 0.254Ineasible
T 0.882 0.835 0.399 0.941 0.991 0.092 0.912 0.975 0.162 0.912 0.934 0.218

Table 5.3.: The DINO score, CLIP score and LPIPS scrores calculated for each settings in each
dataset.

5.3.3. Scaling the Number of Training Images

All previous experiments were conducted using a ratio of five synthetic images per real
image. However, similar to prior studies [54], the ratio of synthetic to real data can impact the
results. We conducted a scaling experiment on the aircraft dataset (and also tested on the
pets dataset, where results were too similar to show significant variation). For the aircraft
dataset, we used the entire set of real images and increased the synthetic data from a 1:1 ratio
up to a 5:1 ratio.

The results show a nonlinear trend consistent with increasing the scale factor, though
the turning points differ across settings. Specifically, for the color and texture settings, peak
performance slightly exceeds the baseline, indicating that when the synthetic data distribution
diverges significantly from the real data distribution, the benefit of OOD data to real data
may be limited to a small range.

Takeaway:

Although modifications to color and texture increase the shift between training data
and real-world data, combining real and synthetic data at certain ratios can still
enhance classifier performance.

5.4. Ablation Study

In our ablation study, we investigate two specific aspects of our method: (1) the impact of
expanding the object mask in the background edition setting, and (2) the effect of removing
the SDXL inpainting refinement step for color and texture generation, where we directly use
ControlNet with the prior image as input without further refinement.

In Figure 5.5, we can clearly observe that the expanded mask retains the spatial relationship
between the object and its background. When the prior image loses the direct relationship
between the main subject and its background, the final generated image often exhibits
a noticeable "floating" effect, as if the object is not naturally integrated within a specific
environment.
As discussed in Section 4, combining the real image and prior image improves the ControlNet
generation results compared to using only the raw prior image. In Figure 5.6, we observe that
even with "final processing" applied to ControlNet’s output, the level of realism and natural
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Figure 5.4.: The scaling experiment results for the FGVC-Aircraft [107] dataset are shown for
background, color, and texture settings. The horizontal axis represents the scale
factor for synthetic images relative to real images. Here, total real image training
set is used, with scale factors ranging from 1 to 5.

Figure 5.5.: The ablation study for the usage to expand object mask for background edition
setting. We show the real generated prior background on the left, and then
present the different combined image with real and prior image.

integration is still inferior to results where SDXL inpainting refinement is first applied before
further processing. This refinement step thus enhances both the realism and the seamless
appearance of generated images.
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Figure 5.6.: The ablation study for the generated images for SDXL Controlnet with final
process(left), and our final generation images using both SDXL inpainting for
refinement and SDXL Controlnet for final generation(right).
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6. Future Work

Although we have made efforts to ensure that the generated images meet the requirements as
closely as possible, and most results align with expectations as shown in the Section 5, certain
exceptions may still arise during the generation process. Our method includes several tunable
hyperparameters, such as: 1) The dilation ratio of the mask during background modification;
2) The transparency when combining prior images with real images during color and texture
modifications; 3) The modification intensity for the mask regions in the SDXL inpainting [74]
model; 4) The strength of the IP-adaptor [46] in ControlNet [40].

Figure 6.1.: Failure case examples.

These hyperparameters act as potential variables that can influence the output results.
Additionally, since the feasible and infeasible prompts P are generated by ChatGPT [3] and
manually reviewed, occasional errors in specific scenarios are inevitable. For example in
Figure 6.1, certain abstract or similar textures may result in generated images that fail to
accurately retain the texture characteristics. Additionally, while certain backgrounds are
feasible for specific categories of objects, they may create infeasible combinations with the
object itself. Like a plane in a hangar is realistic; however, if the real image depicts a flying
plane, altering the background to place it in a hangar mid-flight is clearly not a feasible
scenario in Figure 6.1. Fortunately, these cases constitute only a small proportion of the data,
but developing a filtering algorithm for such scenarios would be essential in future work if
time permits.

For these sub-optimal generation results, we can employ a filtering method based on Visual
Question Answering (VQA) to screen the outputs. Some current open-source large-scale
vision-language models, such as Llava-Next [89] or InternVL [4], have shown promising
results in filtering generated images. By inputting the generated images along with predefined
questions, these models can filter out images that do not meet the expected requirements.

59



6. Future Work

The process is shown in Figure 6.2.

Figure 6.2.: The VQA process using a VLM model to filter the generated images using pre-
defined qustions to check certain aspect for the generated image and ground
truth answers.

We have implemented this filtering method; however, due to the time-consuming nature
of the process, we have not yet performed a thorough screening of all generated images.
Although VQA filtering can significantly enhance the quality of the generated results, ensuring
perfect generation still requires manual screening.

Furthermore, although our method achieves minimal modifications, the overall model com-
plexity remains relatively high, requiring significant inference resources and time. Developing
an approach that effectively modifies these three attributes without the need for extensive
training would be valuable. This would allow for extending synthetic data generation to
additional datasets and scaling beyond a scale factor of 5, potentially up to a scale factor of
30, to yield more substantial and insightful experimental results. Also we have implemented
some other methods to change the object relative size, but due to the pipeline is not very
stable, we did not conduct detailed generation and experimentation. More attributes edition
might be helpful for the project.
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7. Conclusion

In this work, we explored whether the feasibility of the data is necessary for downstream
tasks using our Minimal-Change Synthetic Data Generation (MCSDG) pipeline. From the
controlled background, color, and texture of alterations in real-world images, we create
corresponding feasible and infeasible scenarios for three fine-grained datasets. We validate
our question using the generated synthetic dataset with real images by fine-tuning a CLIP
model with LoRA. Our findings demonstrate that modifying background attributes can
effectively enhance a classifier’s ability to focus on the invariant features of the main object.
However, when modifications directly alter the main object in ways that deviate from the
test set, classifier performance can be adversely affected. The classifier learns not only the
shape of the object itself but also the color or texture of the object. However, even modifying
the feasible color or texture will inevitably produce some differences from the real test data.
It might due to the resolution of the modified image is reduced or there is some deviation
between the training set and the test set, resulting in a decrease in the classification ability of
the classifier.

Moreover, our experiments reveal that combining synthetic data with a suitable proportion
of real-world data can improve classifier performance. We observed that feasible and infeasible
data settings lead the classifier to learn differently, although the overall learning effectiveness
remains consistent.

In summary, our work provides a comprehensive approach for modifying attributes in
real-world images through the MCSDG pipeline. Our extensive experiments validate our
findings and offer detailed insights into the behavior of feasible or infeasible synthetic data
in machine learning. These results shed light on how to generate synthetic data generation,
emphasizing its role in effectively augmenting real-world datasets for robust downstream
tasks.
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A.1. Generation Prompts for GLLM

Due to we have 9 settings for three dataset we used and the most prompts are the same, only
few details are changed for a specific setting. Here we use background setting for Oxford
Pets [106] dataset as example.

Example for Pets Background Word Generation

Task: As an AI language model, generate backgrounds where the
given class of objects typically exists (’feasible’) and where they
absolutely cannot exist (’unfeasible’). For each background, provide
a one-sentence description detailing its visual appearance. Imagine
the background and describe it accordingly, adhering to the specified
criteria.
Criteria:

1. Feasible Backgrounds: Identify environments where the object
class naturally occurs.

2. Unfeasible Backgrounds: Identify environments where the object
class cannot naturally logically be present. Avoid including
fantastical or impossible scenarios, such as "inside a sun".

3. Unique Backgrounds: Ensure each listed background is distinct
and not synonymous with others provided.

4. Empty List Handling: If no unfeasible backgrounds can be
identified, use ’EMPTY’ to denote this.

5. Format Requirement: Answers must be formatted as a Python list,
following the structure shown in the ’Answer’ section of the
’Example’.

Positive Example:

Object Class: Dog
Question: Provide five different unfeasible backgrounds for
a dog, each accompanied by a concise visual description.
Answer:
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[
’underwater coral reef: A vibrant underwater scene

filled with colorful corals, schools of fish, and
shimmering light filtering through the water surface
.’,

’volcano crater: A rugged, rocky landscape with molten
lava, steam vents, and an eerie red glow from the
molten rock below.’,

’desert dunes: A vast, arid landscape with rolling sand
dunes, scorching heat, and sparse vegetation under a
blazing sun.’,

’unfeasible 4’,
’unfeasible 5’

]

Negative Examples:

The Answers are not acceptable as follows:

[
’industrial furnace room: A high-temperature environment

with large furnaces used for metal smelting, filled
with intense heat and noise.’,

’operating theater: A sterile room in a hospital where
surgeries are performed, requiring a clean and
controlled environment.’

]

Because:

• Responses are not in a single ’Python List’ format: [”,
”, ..., ”].

• No need to describe reasons why this background is not
suitable, like ’unsuitable for pets’. Descriptions
should focus on specific visual elements (like objects,
colors, lighting) within the scene rather than abstract
concepts.

• Example like ‘Industrial furnace room’ should describe
‘a large furnace with workers and red-hot objects‘.

Question: Please give me 20 different feasible and unfeasible
background respectively for the class ’pets’, in the meantime, also
give me the detailed description for the background.
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A.2. Feasible and Infeasible Prompts Example

In this section, we select some prompt words W to T2I SD model for show. Due to the space,
we give part of the prompts from Oxford Pets [106] dataset. Here we present 5 prompt words
for each classes. The number like "1.2" here is due to we use the prompt weighting techniques,
the value here is just the prompt weights.

Feasible Prompt Word Examples from Pets.
Background: Feasible Background:

• (suburban backyard)1.2: A grassy area with a wooden fence, a few trees, and a
doghouse in one corner.

• (city park)1.2: A green space with open fields, walking paths, and other people
walking their dogs.

• (beach)1.2: A sandy shore with gentle waves, seashells scattered about, and a few
beachgoers in the distance.

• (forest trail)1.2: A dirt path winding through tall trees, with patches of sunlight
filtering through the leaves.

...

• (dog park)1.2: A fenced area with agility equipment, water bowls, and several
dogs playing together.

• (rural countryside)1.2: Rolling hills with grazing cows, wooden fences, and a
distant farmhouse.

• (patio)1.2: A stone patio with outdoor furniture, potted plants, and a view of the
garden.

• (orchard)1.2: A fruit orchard with rows of trees bearing apples, oranges, or other
fruits.

• (cafe)1.2: A cafe with outdoor seating, water bowls for dogs, and a few other
patrons with their pets.

Feasible Color:

• Abyssinian: (ruddy)1.3, (blue gray)1.3, (silver)1.3, (fawn)1.3, (fawn)1.3.

• American Bulldog: (white)1.3, (brindle)1.3, (brown)1.3, (fawn)1.3, (brown)1.3.

• American Pit Bull Terrier: (blue gray)1.3, (fawn)1.3, (black)1.3, (white)1.3,
(brown)1.3.
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• Basset Hound: (brown)1.3, (white)1.3, (black)1.3, (tan)1.3, (black)1.3.

• Beagle: (black)1.3, (brown)1.3, (white)1.3, (tan)1.3, (brown)1.3.

• ...

• Siamese: (seal)1.3, (blue gray)1.3, (chocolate)1.3, (lilac)1.3, (cream)1.3.

• Sphynx: (white)1.3, (black)1.3, (cream)1.3, (cream)1.3, (chocolate)1.3.

• Staffordshire Bull Terrier: (blue gray)1.3, (black)1.3, (black)1.3, (brindle)1.3,
(white)1.3.

• Wheaten Terrier: (wheaten)1.3, (golden)1.3, (wheaten)1.3, (wheaten)1.3,
(golden)1.3.

• Yorkshire Terrier: (blue gray)1.3, (tan)1.3, (black)1.3, (gold)1.3, (tan)1.3.

Feasible Texture:

• Abyssinian:

– (ruddy ticked coat)1.3: warm ruddy brown fur with black ticking through-
out.

– (sorrel coat)1.3: light reddish-brown fur with coppery tones.

– (blue coat)1.3: soft blue-gray fur with warm undertones.

– (fawn coat)1.3: light cream-colored fur with a gentle rose tint.

– (chocolate ticked coat)1.3: rich chocolate fur with lighter ticking.

• American Bulldog:

– (white and brindle coat)1.3: short fur with a mix of white and brindle
patches.

– (solid white coat)1.3: smooth, short white fur.

– (fawn and white coat)1.3: short fur with fawn patches on a white base.

– (brindle coat)1.3: short fur with a mix of dark stripes on a lighter background.

– (red and white coat)1.3: short fur with red patches mixed with white.

• American Pit Bull Terrier:

– (blue coat)1.3: short, sleek blue-grey fur.

– (red nose coat)1.3: smooth red-brown fur with a coppery hue.

– (black and white coat)1.3: short fur with black and white patches.

– (brindle coat)1.3: short fur with dark stripes over a lighter background.
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– (solid black coat)1.3: glossy black short fur.

• Basset Hound:

– (tri-color coat)1.3: short fur in black, white, and tan patches.

– (lemon and white coat)1.3: smooth, short fur in light yellow and white.

– (mahogany coat)1.3: rich red-brown short fur.

– (black and white coat)1.3: short fur with bold black and white patches.

– (red and white coat)1.3: short fur with red and white patches.

• ...

• Staffordshire Bull Terrier:

– (solid blue coat)1.3: short, sleek blue-grey fur throughout.

– (red coat)1.3: short fur of a rich red color.

– (black brindle coat)1.3: black fur with brindle (tiger-stripe) pattern.

– (black and white coat)1.3: short fur with black and white patches.

– (solid black coat)1.3: short, glossy black fur.

• Wheaten Terrier:

– (soft wheaten coat)1.3: wavy fur of a warm beige color.

– (golden wheaten coat)1.3: wavy fur with golden hues.

– (red wheaten coat)1.3: wheaten fur with reddish tint.

– (pale wheaten coat)1.3: light cream-colored wavy fur.

– (wheaten coat with black tipping)1.3: wheaten fur with black tips.

• Yorkshire Terrier:

– (steel blue and tan coat)1.3: long, silky fur in steel blue with tan points.

– (black and tan coat)1.3: shiny black fur with tan points.

– (golden tan coat)1.3: long fur in a rich golden tan color.

– (blue and gold coat)1.3: dark blue fur with golden tan accents.

– (silver and tan coat)1.3: light silver fur with warm tan points.

Infeasible Prompt Word Examples from Pets.
Infeasible Texture:

• (space station)1.2: A high-tech interior with floating objects, control panels, and
a view of Earth through a window.
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• (deep sea)1.2: A dark, underwater environment with bioluminescent creatures
and no sunlight.

• (volcano interior)1.2: A fiery landscape with flowing lava, molten rocks, and
intense heat.

• (airplane cockpit)1.2: A confined space with numerous controls, screens, and a
view of the sky through the windshield.

• (submarine interior)1.2: A cramped, metallic space with control panels,
periscopes, and no natural light.

• ...

• (mars surface)1.2: A barren, reddish landscape with rocks, dust, and no signs of
life.

• (server farm)1.2: A large room filled with rows of servers, cooling systems, and
blinking lights.

• (intense storm at sea)1.2: A chaotic scene with high waves, strong winds, and
dark storm clouds.

• (deep space)1.2: The vast, empty expanse of space with distant stars, no gravity,
and no solid ground.

• (tornado path)1.2: A chaotic environment with high winds, flying debris, and
damaged structures.

• (sewer system)1.2: A dark, damp network of tunnels with flowing water, pipes,
and an unpleasant smell.

Infeasible Color:

• Abyssinian: (purple)1.3, (blue)1.3, (pink)1.3, (orange)1.3, (neon green)1.3.

• American Bulldog: (purple)1.3, (pink)1.3, (blue)1.3, (green)1.3, (yellow)1.3.

• American Pit Bull Terrier: (purple)1.3, (green)1.3, (blue)1.3, (orange)1.3,
(pink)1.3.

• Basset Hound: (purple)1.3, (blue)1.3, (green)1.3, (yellow)1.3, (pink)1.3.

• ...

• Scottish Terrier: (green)1.3, (purple)1.3, (blue)1.3, (yellow)1.3, (orange)1.3.

• Shiba Inu: (green)1.3, (purple)1.3, (blue)1.3, (yellow)1.3, (pink)1.3.
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• Siamese: (green)1.3, (purple)1.3, (blue)1.3, (yellow)1.3, (pink)1.3.

• Sphynx: (green)1.3, (purple)1.3, (blue)1.3, (yellow)1.3, (orange)1.3.

• Staffordshire Bull Terrier: (green)1.3, (purple)1.3, (blue)1.3, (yellow)1.3, (pink)1.3.

• Wheaten Terrier: (green)1.3, (purple)1.3, (blue)1.3, (yellow)1.3, (pink)1.3.

• Yorkshire Terrier: (green)1.3, (purple)1.3, (blue)1.3, (yellow)1.3, (orange)1.3.

Infeasible Texture:

• (elephant skin texture)1.3: characterized by thick, rough, and wrinkled sur-
faces, with deep creases and fine cracks forming a complex, uneven pattern that
provides both strength and flexibility.

• (cracked marble)1.3: a smooth, solid surface interspersed with intricate, jagged
cracks running across the skin, resembling broken marble.

• (wood grain)1.3: parallel grooves and rings resembling tree bark, with a natural
flow pattern typically seen in wooden planks.

• (stone mosaic)1.3: composed of small, irregularly shaped stone pieces arranged
in a decorative, tiled pattern. ...

• (lava rock)1.3: porous, jagged surface with numerous holes and sharp edges,
resembling solidified lava.

• (metallic scales)1.3: small, shiny scales arranged in an overlapping pattern, giving
a reflective and armor-like quality.

A.3. Minimal-Change Dataset Genration Config

The Table A.1 below presents the specific generation parameters used in our MCSDG pipeline
throughout the generation process.

A.4. CLIP Fine-tuning Detailed Config

The Table A.2 below presents the specific hyper-parameters used in our CLIP fine-tuning
process.
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Back Color Texture

Parameters
Pets AirC Cars Pets AirC Cars Pets AirC Cars

F IF F IF F IF F IF F IF F IF F IF F IF F IF

Guidance Scale for SDXL 40 7.5 7.5 12 12 30 12 8 30

Guidance Scale for Contronet × 7.5 7.5

Strength for SDXL 0.99 0.95 0.9 0.3 0.8 0.85 0.3 0.3 0.65 0.3 0.65 0.3

IP-Adptor Strength × 0.7 0.4 0.4 0.2 0.5 0.65 0.4 0.65 0.4

Inference Step for SD 20 × 15

Inference Step for SDXL 30 20 20

Inference Step for ControlNet × 30 30

Mask dilated factor/alpha factor 120 50 25 0.3 0.6 0.6 0.5 0.4 0.5 0.65 0.65 0.65

Table A.1.: The detailed generation parameters for MCSDG pipeline for each settings and
each dataset.

HyperParameters lamda lr Min_lr Weight decay Warm up steps CLIP LoRA rank CLIP LoRA alpha

Values 0.5 {1e-3,1e-4,1e-5} 1e-08 1e-03 5% total iterations 16 32

HyperParameters Training bs Test bs Train iterations Val iterations Data augmentation

Values 64 8 Pets:20700/AirC:72000/Cars:91840 1/70 Train iterations
random resized crop, random horizontal flip, random color jitter, and

random gray scale

Table A.2.: The hyper-parameter details for fine-tuning CLIP model.
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B. Figures

B.1. Approach Part Method Generations Comparison

In this appendix section, we present comparison figures omitted from Section 4 due to space
limitations. Figures B.1 and B.2 illustrate the four baseline methods in color and texture
adjustments, respectively. Figures B.3 and B.4 provide comparisons of generation results
using prior information with SDXL inpainting and ControlNet.

Figure B.1.: The color attribute change setting results for four different base models.
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Figure B.2.: The texture attribute change setting results for four different base models.
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Figure B.3.: The background attribute change setting results with prior input listed on the
left.
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Figure B.4.: The texture attribute change setting results with prior input listed on the left.
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B.2. Final Generation Examples Visualization

We present additional generated examples in Figure B.5 and B.6 as an addition describe
in Section 5. Also more diverse samples in Figure B.7. As shown, the modifications are
successfully applied in each randomly selected example.

Figure B.5.: The selected generation visualizations for the Oxford Pets Dataset [106] are
shown below. Two real samples are listed at the top, with the corresponding
prompt word annotated in the bottom-right corner to indicate the prompts used.
For space considerations, we do not display the full prompts, omitting detailed
descriptions for background and texture.
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Figure B.6.: The selected generation visualizations for the Fgvc-Aircraft Dataset [107] are
shown below. Two real samples are listed at the top, with the corresponding
prompt word annotated in the bottom-right corner to indicate the prompts used.
For space considerations, we do not display the full prompts, omitting detailed
descriptions for background and texture.
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Figure B.7.: More generation examples randomly selected from our DSynB, DSynC, and DSynT.
For visualization, we resize all of the images to be the same size.
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[CLASS] The class name in a dataset. 36

DSynB Synthetic Minimal Change Background Dataset. 34, 46, 76, 79

DSynC Synthetic Minimal Change Color Dataset. 34, 46, 76, 79

DSynT Synthetic Minimal Change Texture Dataset. 34, 46, 76, 79

GLLM LLM prompt text generator. 34

G T2I Stable Diffusion image generator. 34, 35, 38

PID In distribution prompts. 34, 36, 37

POOD Out-of-distribution prompts. 34, 36, 37
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Acronyms

C C. 34–36

ID In Distribution. iv, vi, 19–21, 34, 35, 53

MCSDG Minimal-Change Synthetic Data Generation. iv, 34, 46, 48, 61, 78

OOD Out-of-Distribution. iv–vi, 18–22, 34, 35, 53, 56

SD Stable Diffusion. vi, 23–25, 33

T2I Text-to-Image. vi, 23
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