
Introduction to ROS Group Project:

Autonomous Quadruped

Group 23: Rui Xiao, Yiwen Liu, Bo He, Zhixian Huang, Ali Rabeh

1 Introduction

In this section, an introduction to our project will be given. To solve the au-
tonomous quadruped problem, we can divide this task into perception, path
and trajectory planning, and controller parts. Meanwhile, the state machine
will guide the quadruped to follow different task strategies. The following Fig-
ure 1 shows the general pipeline of our project.

Figure 1: Pipline of our project:The package means which kind of outside
package we used, the last line shows you the different ROS nodes.

We aim to solve the problem without any previous information for the
quadruped, so we decided to use the perception to give the real-time map
information to the path & trajectory planning node, then the path & trajectory
planning node will according to map information to formulate the future path.
Based only on the real-time path planning information, we switch the
different state of state machines to publish the next desired point that the
RoboDog should arrive at and the corresponding control state. With the next
desired point and control state, we can specify different control parameters to
achieve the desired motion.

However, due to the global map being complex, it is very hard to judge the
state according to the trajectory information, we finally only achieved to let the
robot dog move to the front of the parkour. We will analyze this problem in the
section 9.

2 Perception

2.1 General Perception Pipeline

We design our perception pipeline as dsiplayed in Figure 2. First of all, the
”depth image proc package” , which is subsribed to the ”camera info” and ”im-

1



Figure 2: The proposed perception pipeline aims to generate an occupancy map
from a depth image, which will be further used in the planning part.

age rect” topic, is used to convert the camera data into point clouds, and publish
under the /point cloud topic. Secondly, we use ”ros noetic point cloud server”
to convert the point cloud into octomap. Since we only need 2D Octomap for
the planning, ”ros noetic point cloud server” can also intrinsically convert it to
2D occupancy map. Now the projected 2D occupancy map is published under
the ”/projedcted map” topic.

2.2 TF Transform & Filtering

In order to get the correct pose of the point clouds, we need to add transforma-
tion of the point cloud frame with respect to the base frame. Here we configure
it as ”0 0 0 0 0 -1.7453”, this means that the point clouds will rotate to the
horizontal plane so that we can better visualize in Rviz.
Besides, since the initial Octomap is very noisy, containing irrelevant ground
points, we set the ”point cloud min x” to be 0.15, ”point cloud max x” to be
0.4 to filter out the ground points as well as decrease irrelevant points to generate
a cleaner Octomap.

3 Path Planing

3.1 Implementation of move base package

For path planning, we used the outside package move base to accomplish this
task, and the configuration files are in the “/src/simulation/param” folder. We
don’t have the global map at the initial time, so we only use the global planner
of the move base package. The move base subscribe “/projected map” from
perception part to get current map information. It also subscribes the set goal
information from “/move base simple/goal” topic to get the final goal of the
path, note current state information is from “/tf” topic. Based on configuration
files and internal algorithms, it will publish a global path from the current state
to the set goal point under “move base/NavfnROS/plan” topic. The above
information is contained in Figure 3.

3.2 Important parameters configuration

There are some significant parameters to be set in the .yaml files for move base.
Following we only introduce to you some important parameters to be noted in

2



Figure 3: move base topic subscriber and publisher

some files.
In the ”costmap common params.yaml” file, we need to specify:

1)Footprint: this embodies the size of a RoboDog, after some experiments,
we set this value to ”[[-0.2, -0.2], [-0.2, 0.1], [0.2, 0.1], [0.2, -0.2]]”.

2)Inflation radius: The value expands the cost area outside the collision
area, allowing the robot to plan paths to avoid obstacles. Some of the passages
in the map are very narrow, so we let the value smaller such that the path will
not be blocked up. But this value should not be too small, otherwise, the robot
will come through the obstacles. We finally choose this value to 0.26.

3)Cost scaling facto: The smaller the value is, the cost of coming through
the obstacle is larger. So we choose this value to 0.

4)Map topic, point cloud sensor: some topic names should be consistent
with other files.
In the ”global planner params.yaml”, we need to specify the global planner
using Dijkstra algorithm to plan the path.
In the ”global costmap params.yaml”, we need to specify the global frame
to the world to set Odom coordinate. And the ”robot base frame” should be
true body.

4 State Machine

The state machine contains INITIAL, STRAIGHT, TURN, and END four
states. The main function of different states is to identify different motion states
of RoboDog and publish different next desired points according to the state. We
designed some functions using the included angle between the current velocity
and distance vector to the desired point. With flag variables to distinguish
different states. The core to distinguish STRAIGHT and TURN mode is to
check the planning path from move base. If the included angle is smaller than
10 degrees, we will define this situation as STRAIGHT. If the included angle is
between 10 degrees and 150 degrees on both sides, it will be in TURN mode.
Otherwise, the path will be invalid and will regenerate again. Figure 4 shows
the state machine and corresponding control state for the controller node to use.

3



Figure 4: State Machine: Each state will publish different next desired point
and corresponding controller state.

5 Trajectory Planning

The trajectory planning is based on the state machine. These two functions are
merged in the trajectory node. The trajectory node publishes the next desired
point as our next trajectory point based on path planning. From INITIAL
mode, it will first let the RoboDog move to a specific start point. Then in the
STRAIGHT mode, it will publish the next point 1.0-meter far away point from
the current. In the TURN mode, it will publish a 0.4-meter far away point from
the current. When it is very near to the goal point, it will publish the goal point
as our desired point.

6 Controller

6.1 Function

The controller can realize that the RoboDog reaches a target point set in a
short distance from the current position, and then repeats this step to reach the
final destination. It mainly includes three states: going straight, turning left
and turning right. We can compute theta value using cosine law like following
Figure 5, and judge the direction using cross product of two vectors.

Figure 5: Velocity direction and desired direction

4



6.2 Input

x: Current position of the RoboDog in 2D.
xd: Desired position in 2D.
v: Current speed of the RoboDog with a direction.

6.3 Speed of the RoboDog

We keep the phase between the front and back legs at 0 degree and then the
RoboDog will keep a constant straight speed.

6.4 Rotation

We mainly use the following formula to obtain the rotation angle:

steering angle = rotation ∗ (K − cosθ)

We can get the velocity orientation and distance orientation(defined as xd− x)
from the map, and then can we get the angle between them by calculation with
vector formulas. If the angle is greater than 40 degrees, and the vector cross
produkt is less than 0, the robotdog will turn right, if the vector cross produkt is
more than zero, the robotdog will turn left. If the angle is less than 40 degrees,
the RoboDog will keep going straight. Rotation is a parameter that changes
with distance, K is an adjustable constant value if it is far away from the target
point, the robot dog will keep going straight. and the steering angle is close to
90 degrees. If it is very close to the target point and theta is greater than 40
degrees, the robot should turn left or right according to the conditions, and the
steering angle should be close to 45 degrees or minus 45 degrees.

7 Keyboard Control and Gait Walking Param-
eters

To test our the gait walking parameters, we implemented an alternative control
method using the input from the keyboard. For this we used teleop twist keyboard
package that publishes different geometry twist messages into the topic ”/cmd vel”.
The controller subscribes to this topic and depending on the twist input, decides
on how to control the robots using the gait walking parameters.
We determined the following numerical parameters depending on the input.

Table 1: Gait Walking Parameters
Angular Velocity 0 1 2 3 4

Jump Type 1 0 0 8 35 10
Jump Type 2 0 0 8 35 7

Forward 0 90 5 0 10
Right Turn 0 45 0 0 7
Left Turn 0 -45 0 0 7

Stop 0 0 0 0 0

5



We used the angular velocity 1 which corresponds to the phase between front
left and back right legs and front right and left back legs, to control if the robot
will move forward or turn. // For the obstacles we had to jump promoters, the
first one worked for obstacle 1 and the second one worked for obstacle 3. For
Obstacle 2, we simply used the forward case parameters since we had enough
frequency of legs to overcome the obstacle.

8 Results

8.1 Real-time Result

In the real-time perception&planning method that we used, the RoboDog is
able to perceive the surroundings plan a real-time trajectory, and let the dog
move along the line, although very slowly. The RoboDog can reach the first
turn before the obstacle, as shown in this video.

8.2 Keyboard Control Result

In the alternative method that we used, we mainly used keyboard control to
guide the dog to get over the obstacles. Here our RoboDog can go much further
and successfully move over the obstacle. The resulting video is included in this
drive folder.

9 Problems and Improvements

• As mentioned in Section 1, we want to only use real-time planning in-
formation to control motion. The problem is the self-motion estimation
is not perfect and it will lead to some mistaken judgment. As a result,
we designed kind of complicated algorithms to judge which state should
remain and under which requirement the state will change. However, we
can successfully change the mode from STRAIGHT to TURN, and the
corresponding control parameters will change from ”0 90 0 0 7” to ”0 45 0
0 7”. But when it switches back from TURN to STRAIGHT, due to the
window fulfilling the STRAIGHT requirement is very small(±10 degrees),
although the control parameter has changed to ”0 90 0 0 7”, the RoboDog
still continues to turn until missing the STRAIGHT window. We analyze
this problem due to the RoboDog is not so sensitive to control parameter
change in a small time. But we have not found a solution to solve this.

• Becasue of the problem mentioned before, the current version of the con-
troller only uses the information about x,y coordinates of next desired
point to control the RoboDog. The control parameter is defined by some
variables and changes in real-time. From some point, it is a kind of com-
mon method to control both straight and turn modes. But the
problem is this method is very difficult to adjust and the RoboDog moves
very slow.

6

https://drive.google.com/drive/folders/1x0DgqKCrxgZA4I9PQ1kYIrIXz226yr1q?usp=sharing
https://drive.google.com/drive/folders/1rYOw-1s-6NrGSJopEtIDOBrpni9YAZXS?usp=sharing


10 Task Distribution

• Perception: Rui Xiao, Zhixian Huang

• Path Planning: Yiwen Liu, Bo He

• Trajectory Planning & State Machine: Yiwen Liu

• Controller: Bo He, Yiwen Liu, Rui Xiao, Ali Rabeh

• Report Written: Yiwen Liu, Rui Xiao, Bo He, Ali Rabeh

Note:

• One of the initial group member, who is mainly responsible for the control
part, de-registered this course last friday and gave up to continue. Ali
Rabeh joined our group this week, due to all of his group members gave
it up. He successfully implemented the keybord control method.

• Rui Xiao and Yiwen Liu shared the same laptop for this project, so they
used the same account for pushing the code to Gitlab :)

7


	Introduction
	Perception
	General Perception Pipeline
	TF Transform & Filtering

	Path Planing
	Implementation of move_base package
	Important parameters configuration

	State Machine
	Trajectory Planning
	Controller
	Function
	Input
	Speed of the RoboDog
	Rotation

	Keyboard Control and Gait Walking Parameters
	Results
	Real-time Result
	Keyboard Control Result

	Problems and Improvements
	Task Distribution

